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ON THE SCARCITY OF LATTICE-ORDERED
MATRIX RINGS

E. C. WEINBERG

It is well-known that the ring Q. of % X7 matrices over
a lattice-ordered ring @ may be lattice-ordered by prescribing
that a matrix is positive exactly when each of its entries is
positive. We conjecture in case Q is the field of rational
numbers that this is essentially the only lattice-order of the
matrix ring in which the multiplicative identity 1 is positive
and settle the conjecture in case n=2. There are however
other lattice-orders of (. in which 1 is not positive. A
complete description of this family is obtained.

THEOREM. Up to isomorphism there is exactly one lattice-order
of the algebra Q, of two-by-two matrices over the field Q of rational
numbers in which the identity 1 is positive.

For each rational number B > 1, there is a lattice-order of @,
wn which there are distinet positive tdempotents fi, fy, f5, ond f,
satisfying:

(i) A=B)(fi+f)+ B(fs +f)=1, and

(ii) Q. is the l-group direct sum of the subrings Qf;, 1 =<1 < 4.
These lattice-orders are mot isomorphic, and each lattice-order in
which 1 18 not positive 1s isomorphic to one of them.

Proof. Any lattice-order of a finite-dimensional semisimple algebra
over the field of rational numbers is archimedean [1]. Hence, for any
lattice-order of @,, Q,, as an l-group, is the direct sum of (at most
four) totally-ordered subgroups of the real numbers [2]. We will
consider and eliminate the various cases that might occur depending
on the number of summands, the dimensions of the summands, and
the number and sign of the nonzero coordinates of the identity matrix
1 in each such decomposition.

In each case ~ denotes l-group isomorphism,

We will begin by considering all possible lattice-orders in which 1
is positive. The reader should note that in this case the components
of 1 in a decomposition of @, into the I-group direct sum of totally-
ordered groups are pairwise disjoint mutually orthogonal idempotents.

(1) Suppose that Q,~E QRQE,QE,RE, E;+0,0<1, and
l=¢ + 6+ e+ e with e;e E|.

(1a) If all of the coordinates of 1 are different from 0, then @,
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is spanned by commuting elements. This is absurd.

(1b) Suppose that exactly three coordinates of 1 are different
from 0: ¢, e, e; >0=c¢,, Let 0 <neE, Then 0= emn <n implies
en = kn for some k;€ Q*. Moreover, en — kin = kmn, so k; =0 or
k;=1, If, for all 4, k, = 1, then n = en + e,n + e;n = 3n which is
impossible, If, for some %, k; = 0, then e;Q, = E; is a one-dimensional
right ideal. However, all right ideals of @, have even dimension.

(lc¢) Suppose that exactly two coordinates of 1 are greater than
0:e,6 >0,e;,=¢,=0. In this case there is a lattice-order and we
need only show that it is determined up to isomorphism. Let 0 < n,¢€ Ej
and 0 < n,e E,. As in (1b), for each ¢ and j, either emn; =0 or
en; = n;, Moreover, by the Cayley-Hamilton theorem, there are
rational numbers ¢ and » such that

n: = q + rn; = qe, + qe, + ru;

Thus E, Q E, ® E; and E, ® E, Q E, are subalgebras of Q..

Let en, = ki, k;€ QY. Then eemn, = kkn, =0, so k, or k, is 0.
Suppose k£, = 0. Then (e, + e)n, = n,;, so

(i) em, = m, and

(i) em, =0.

If me, = 0 as well, then n.e, = n,. For some ¢, r€ Q*, ni=q + rn,,
nie, = qe; + rn, 80 ¢ =0 and niec E,. Thus n(E,Q E.Q E,) = E,.
Since n,Q, is at least two-dimensional, nm, > 0. Similarly

61(E1 ® E, ® Es) = K,

implies en, > 0, so en, = n,.

Then 0 = n,en, = nm, > 0. Hence

(lll) n.e, = n,,

(iv) me, =0, and

(v) n:=mnemn, =0.
If e, = 0 as well, then ¢,Q, = E,, so

(vi) em, = n,

(vii) em, = 0, and, as above,

(viil) m,e, =0

(ix) m.e, = m,, and

(x) ni=0,

To complete a multiplication table for @, it suffices to calculate
nMn, and n,m,:

nMm, = ae, + be, + cn, + dn, for some a, b, ¢, dc Q*. Then nin, =
0 = an, + dn.n, implies a = d = 0, while nn} = 0 = c¢n,n, implies ¢ =0,
SO 1M, = be,. If n,m, =0, then 7,Q, is one dimensional, so b > 0. Observe
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that replacing n, by b~'n, does not change the validity of any of the
equations (i)-(x), so we may suppose
(xi) mm, = e,
Similarly, mn, = ce, for some ¢ > 0. Using the relations already
obtained it is now easy to check that nm, 4+ n,m, = e, + ce, commutes
with e, €, %, and 7, and hence is in the center of @,. Thus ¢ =1, and
(xil) mn, = e,
The equations (i)-(xii) uniquely determine a multiplication table for
Q.. This lattice-order is evidently the usual order for @Q,.

(1d) Suppose that exactly one coordinate of 1 is greater than
O:e,=e6,=¢,=0,e,=1>0. Let 0<mnekE;,7=1,2/8. Observe
that

0=nn; < (n; + n,;)*=a + bn; + n;) for some a,be Q*

implies that each E;® F, and each E;® E, ® E, is a subalgebra of
Q.. We will consider and successively eliminate several cases depending
upon the location of idempotents in the summands.

(1d,) Suppose that E, E,, and E, contain no nonzero idempotents.
Assume that one of the n,'s, say n,, is invertible. Then n} = q + rn;
¢, 7€®%,¢>0. We have nm, = a + bn, + ¢n, for some a, b, ce @+,
Since E;Q E, is an algebra containing %% ¢ > 0 and nn, > 0. Then
qQn, + TN = Wi, = bg + (a - br)n, + enm,, and (r — c)nn, = bg +
(@ + br)m, — qn,, so bg=0,a +br =0, Thus a =b =0 and nm, =
en, > 0. Now, if n2 = s + tn,, then cni = nni = sn, + ten, = ¢s + cin,,
and s =0. If ¢t >0, then t~'n, is a nonzero idempotent, so %i=0.
Similarly %3 = 0.

If none of the n,’s are invertible, then again n} = n} = 0. Recalling
that #.n, and n,m, belong to E, X E;Q E, one can quickly compute
nym; = My = 0 so that E,® E, is a two-dimensional nilpotent sub-
algebra of Q.. This is absurd.

(1d;) Suppose that at least two summands other than E, contain
nonzero idempotents: say 0 < #, = niec E, and 0 < n, = nic E,. We
have nm, = q + un, + vn, for some q, u, v€ Q*; nn, = N = UNnN, +
(g + v)n, so wunm, = un, and similarly wvn,n, = vn,. Suppose, for
example, that

( *) nm, = n,,

Calculate n,m; = a + bn, + cn, for some a, b, c€ Q*, nin, = (@ + b)n, +
cenmy = o + bn, + c¢n,, whence cnm, = a + ¢n; — an, and a = 0. If
¢c=0, then nQ,=FE, so b=0 and

(%) M1y = my,
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As above, n,n; = yn, + zn, and znm, = zn,. If 2z # 0, then Qn, = E;,
80 MMy = yn, for some ye Q. However, by (*) and (**), this yields
(mm)ny = nmy = My = ny(MeMs) = ynun, = yn,. Hence (*) is false and
mm, = 0, Similarly n,m, = 0, Calculate, as above, nm; = an, + yn,
and ynn, = yn,, If y =0, then %,Q, = E,, so nm, = n,. Similarly
NNy = NN, = NNy = Ny SO N, belongs to the center of @, which is
impossible,

(1d;) Suppose that 0 < n, = nic E,, but E, and E, do not contain
mnonzero idempotents, As in (1d,) either nn, = kn, or n,n, = n,; either
NNy = MmN, OFf NN, = N,, We cannot have both nmn, and n.n, in E,
for then #,Q, = E,. We cannot have both nm, = n, and nmn, = n, for
then 7,Q, is three-dimensional. Thus we may assume that nm, = n,
and n,n, = kn, for some ke Q*. If k& > 0 we can replace n, by k~'n,,
obtaining the possible cases:

(i) mm, = n, and n,m; = 0, or

(i) nm, =mn, and nn, = n,.

Consider (i). Calculate %= a + bn; for some a,be@*. Then
;=0 implies ¢ =0, and the fact that FE; contains no nonzero
idempotents implies b = 0; i.e., mi=0. From this we can show
7., = 0, which yields @Q,n, = E..

~ Consider (ii). As in the first part of the argument for (1d,),
N3Ny = Ny OT NN, = kn, for some ke Q@+, If nn, = n,, then n; = nnmn, =
NN, = N, although FE, contains no idempotents., Thus nm, = kn,;
moreover, k = 1, so m, commutes with n,. Similarly n.n, = kn, or
M = N,, In the first case, @, = E,. In the second case, n, is in
the center of @,, which is false.

This completes the proof that there is no lattice-order of @,
satisfying the hypotheses of (1d).

(2) Suppose that Q ~ E, ® E, R E;, 1 > 0, E, is two-dimensional,
and E; =0, Let 1=c¢, + €, + ¢, ¢;€ E,.

(2a) If all e; > 0, then each E; is an ideal.

(2b) Suppose that e,e. >0 =-¢,. Let 0<mneckE, As in (1b),
for i=1 or 2, en=mn or een=0, If e¢n=0, then en =n and
Emn = E, Since n* = a + bn implies e,n* = 0 = ae,, we also get n*c K,
so Qn = FE,. Thus e;n = n, e;n = 0, and again Qun = K,

(2¢) Suppose that e, = 0 < e, e, Let 0 < ne E,. Since ¢;n and
ne; belong to E, we can show that E, is an ideal if it is a subalgebra.
Either e;n or e, say e,m, is different from 0. Then (e,n)* = a + ben,
80 65(e.n)® = 0 = ae, implies (e,n)® and hence (E,)* is contained in E..
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(2d) Suppose that e, >0 =¢,=¢,. Let 1 and y be a positive
basis for E,. Then y* = a + by € E, implies E, is a totally-ordered ring,
If a = 0, then either E, is a zero-ring or E, is an archimedean totally-
ordered ring with two linearly independent idempotents. Since both of
these cases are impossible [2], v, and hence each nonzero element of
E,, is invertible. From this it is easy to see that E, is two-dimensional,
a contradiction.

(2¢) Suppose that e, =e¢,=0<e. Let p, and p, be positive
linearly independent elements of E|, and let 0 < ne E,.

Calculate 9} = gq; + r;p; for some g¢;, r,cQ". Since E, if a
subalgebra, can neither be nilpotent nor contain linearly independent
idempotents, neither ¢; is 0, so both p, and p, are invertible in Q..
Calculate

o = a + (bp, + cp:) + dn
for some a,d€Q*; b, ceQ; bp, + c¢p, = 0. Then
am + ripm = pin = ap, + 0.(bp, + ¢cp,) + dpn
and
(r, — d)pn =.ap, + p(bp; + cp) — @ .

Before proceeding, observe that p,p, = (p, + .)* = @ + y(p, + »,) implies
that E,® E; is a subalgebra. Since ¢, > 0, p,(@ + bp, + ¢p.) = 0, @ +
bp, + ¢p, = 0, and hence a = b =c¢ = 0. Thus pn, and similarly p,n,
belong to K, Since p, and p, are invertible, this implies that E, is
two-dimensional which is a contradiction.

(3) Suppose that Q. ~E, QE,, E;#0,and1=¢, + ¢ >0,¢,€ E,.

(3a) If both coordinates of 1 are greater than 0, then each E| is
an ideal.

(8b) In case E, is three-dimensional and 1€ E|, see the argument
of (2d).

(3¢) Suppose that E, is three-dimensional, E, is one-dimensional,
and 1e¢ E,. Let 0 < fe E, and f*= a + bf for some a, be Q*, Since
E, cannot be a right ideal, @ > 0 and f is invertible. Let % be an
element of E, which is bigger than but not a rational multiple of f.
Then 4*= ¢ + yh. Define

L={reQ:rf=h}
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and
U={seQ+:sf=h}.

Define t = sup L = inf U.

If y=0, then fhe E,. In such a case, for each re L and se U,
rft < fh = sf? so ta = fh and ¢ is rational. Since this is impossible,
y # 0. For each re L and sc U, *f* = h* < s*f* whence t°a¢ = ¢ and
t* is rational., Then *f = yh and h is a rational multiple of f.

(3d) Suppose that E, and E, are two-dimensional and 1¢ E,. Let
0< fekE, f*=a+ bf,a and b in Q. Observe that ¢ must be nonzero
in order to prevent E, from being an ideal.

If e is a positive element of E, which is linearly independent of
1, consider ¢* =« + ye, x and y in Q*. If =0, theny > 0and y'e
is a nonzero idempotent of K, different from 1. Since this is impossible,
E, is a field, The remainder of the argument for this case resembles
that of (3c).

(4) Suppose that Q, = E,. Since the field of rational complex
numbers is a subalgebra of Q. which has no total order, this is
impossible.

We now consider the possible lattice orders of @, in which 1 is
not positive, Their description is obtained in (7b).

(5) Supposethat Q. ~ E, R FE,, 1 =¢e, + e, ¢,€ E;, and ¢, <0< e..
One of the summands, say E,, has dimension bigger than 1. Calculate
e=a+be, = (a+ be, +ae,. If a =0, then ee, — ¢, — e = e.e,€ E,
and E, is an ideal. Thus a > 0.

Let 0 < f be any positive element of E, which is linearly inde-
pendent of ¢,, Let L = {peQ*: — pe, =< f}, let U ={qe Q": — qe, = f},
and let 7, be the common least upper bound of L and greatest lower
bound of U in the set of real numbers. Calculate f* = x + yf for
some ¥, y€ Q. For any p in L and q in U, p’e = © = ¢*a, so r2 = za™",
However, 7, and r,_, cannot both have rational squares.

(6) Suppose that Q. ~ E,QE.Q E,, E; #+ 0;¢;€ K;, and 1 = ¢, +
e, + ¢, IS not positive, Let E, be the two-dimensional summand.

(6a) Suppose e, < 0 < e, e;. Then €} = a + be, = ae, + (a + b)e. +
ae; = 0 implies @ = 0. Thus e = k.e, and e = ke, for some k;c@Q*.
Since E; cannot be a nilpotent subalgebra, e =« + ye, > 0. If 2 =0,
then ¢,1 = e, = ye, + e, + e.¢,, and ee, + ¢,6,€ E,, 80 6, and e, € K.
However le, = e, = e.e, + €i + ese,, €0, > €, and e2c E, gives rise to a
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contradiction. Thus @ > 0, ¢, is invertible, and each element of E, is
invertible. This means that T' = F(e, + e;) is a two-dimensional totally
ordered subspace of Q, and hence equals E,, although e (e, + ¢;) =
e, — e =(1—a—ye — x(e, + e) belongs to T.

(6b) Suppose that e, e, > 0 > e,. Then ef = ke, so E, is a sub-
algebra of Q.. Since E, cannot be nilpotent, ¥ > 0. Moreover, if
0 < fe E, is linearly independent of e, then f* = ¢f for some tecQ,
t = 0. TUnfortunately, this yields linearly independent idempotents
t~'f and k~'e, of a subring of the real field.

(6¢) Suppose that e, e, < 0 < ¢;,. Argue as in (6b).

(6d) Suppose that e, > 0 > e, ¢, Argue as in (6a) to obtain e,
in E,. Then e, = (e, — €l) — e.e, and e, — €} € E, implies e, = ¢} which
is absurd.

(6e) Suppose that e, = 0,6, < 0 < e, Let 0 < feE,. Then f*=
kf for some ke Q. Since E, cannot be a nilpotent algebra, k& > 0.
In this way we can produce linearly independent idempotents of the
archimedean ordered ring E..

(6f)- Suppose that e, <0< e,e,=0. Let 0<nekE, In the
usual manner it can be shown that E, ® FE, is a subalgebra of Q..

Now #*=a + bn = ae, -+ ae, + bn implies a = 0, Assume that
nt* = 0, If, in addition, e;n = 0, then en =n and @Qmn = E;. Thus
en =g+ ve, +yn #= 0 for some ge E; ¢, yc Q. Thenen’ =0 =gn +
zem. Since g =0 and ¢ <0, gn =xe;n =0. Thusax =0,9 =0, and
Q.n = K.

Hence n* = bn for some b > 0. Without loss of generality we
may assume that n is idempotent. Again, en =g + we, + yn, en’ =
em = gn + ven + yn, and (1 + x)e, — g)n = (x + y)n. Since en ¢ K,
it follows that ® + y =0, s =y = 0, and g = e, S0 ¢;n = ¢, and e,n =
n — e,. Since @m cannot be three-dimensional, if f is an element of
E, which is linearly independent of e, then fn = te, for some te @,
t = 0. Whence (e, — t~if)n = 0, which implies e,;n = 0, a contradiction,

(6g) Suppose that e¢; > 0 > e, ¢, =0. Proceed as in (6f) down
to the point where it is concluded that # + y = 0. From the two
equations for emn we calculate (g9 — xe)n = g + e, — an = em, SO
g = (1 + x)e,. We have en = (1 + x)e, + we; — xn and

en = — (1 + x)e, — we, + (1 + 2)n

which yields 0 =1+ 2 < 0. Thus en = — e, + n and en = e,
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Since @Q,n cannot be three-dimensional, if f is an element of E,
which is linearly independent of e, then fn = ae, + bn for some
a,be Q. We have (f + ae)n = (e + b)n, whence en ¢ E,, a contradic-
tion.

(7) Suppose that Q. ~E QERQRE,RQE, E,+0, e¢,ck;, and
1=c¢ + e + e + ¢, is not comparable to 0.

(Ta) Suppose that e, < 0 < e, e, e,. Then e = a + be, = ae, +
(@ + b)e, + ae; + ae, implies ¢ =0 and elc K,  Similarly, eic E,
(6, + e)’c B, Q E, etec. Thus E, R E,Q E, is a subalgebra of Q..
Now calculate

0=a=1—(ea+e+e)=1—2% + ¢+ e+ (& + e +e)
:31+f

for some fe E, R E, R E,, although e, < 0.

(7Tb) Suppose that e, ¢, < 0 < ¢;, ¢, There are lattice-orders of
@, in which this situation is realized.

For each ¢ there exists k;€ @ such that e = k;e;. In addition,
(6; — ;)" = t(e; — e;) for some tc @ as long as =3 or 4 and 1 =1
ar 2, in which case E; Q E; is a subalgebra of @,. Calculate ee;, =
ae, + be; for some a, be Q, eje; = k.e.e, = ak.e, + bee,;, and e,ei = kiee; =
aee, + bkse;, which yield be,e, = bk.e; and ae.e, = ak.e,. Either ee; = 0,
or e, = ke, or ee, = kse,. Similar results hold for e,e; and e;e; as
long as i =1 or 2 and 7 = 3 or 4.

Assume that one such product is 0; e.g., e,¢; = 0. Then ¢, = ¢1 =
e+ e, + ee; + ee, and ee, = (1 — ke, — ee,. If €6, =0 or ee, =
ke, then ¢Q,= E, is one-dimensional. If ee, = ke, then ee, =
(1 — ke, — ke, implies 1 =k, =0 which is absurd. Thus no such
product is 0.

Suppose that

(1) ees=kes,k <O.

(The case e.e; = ke, will be discussed separately.) Then e, = e,1 yields
ee.= (L — ke, — ke; — ee,. If ee,=ke, then 1—% =0 which
contradicts &, < 0, so

(i) ee, = ke,k, >0, and

e, = (1 — k., — ke, — kes .

Calculating e, = le, we get e, = (1 — k, — ky)es — eses.  If ee; = ke,
then Q.e, is one-dimensional, so
(ili)  e.es = kseo, ks > 0 and

e, = (1 — k, — ky)es — kse, .
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Now 6,6.65 = kties = Il — ki — k)ey — hidesea = (1 — , — )eses — ek =
k(1 — k, — kJes — kikse;, whence

(iv) 1=k +k, and

(v) ee=— ke,
Calculate ¢,6; = ke, = — kk.e; = — kieses, SO

(Vi) €6, = ke,
and ee, = 6. — €6, — € — €6, = (L — ky)e, + (b, — ky)e;, whence

(vil) k= k.
Now e,6, = €, — €6, —
whence 1 =k, + ks

(viii) k; = k,, and

(ix) e = ke
Since €6, = €; — €38, — €; — €38, =
ee, — 66, — ¢, = (1 — ke, — ke, —

(x) e, = ke,

Leta=k =k,B8=k,=k,fi=ke,. Thena<0<B,a+8=1,
and the f/'s are nonzero linearly independent idempotents different from
the identity and satisfying

alf,+f)+B(fs+f)=1.

Moreover, equations (i)—(x) together with the fact that e, + e, + ¢; +
e, = 1 yield the following multiplication table.

e — €, = (L — ke, + (ks — k)e. — (1 — &k, — ky)es,

— e, and simultaneously e;e, = ¢, —
e.e,, we must have

fi Je I S
S S — Ba~fs I3 S
fo | — Baf, fe fe s
fa fi /s s — aB7f,
i s fe —aB7f, s

Thus such a lattice-order would be determined up to isomorphism by
the choice of 8. The matrices

(10 [~ Bat1
fl— (O 0) y fz“ (_~ Baf—2 a_l) ’

(1 —aps™ _ 1 0
f3_<0 0 ) f““(a—l o)

fulfill all of the requirements.

Clearly distinet £’s yield nonisomorphic lattice-orders.

Finally, suppose that e,e; = ks;e; (rather than k). Now ee, =
e, — e —ee,— e =1 —k,— ke, —ee. If ee, = ke, then ¢@Q, is



570 E. C. WEINBERG

one-dimensional. Thus e,e, = k,e,. This indicates that the lattice-order
must be isomorphic to one of those already considered.

(7Te) Suppose that e, ¢, ¢, < 0 < e, Proceed as in (7a). Then
e:=kie; for 1 =12 8 and E,Q E, R E, is a subalgebra of Q,. Cal-
culate ¢2 = ¢, + f for some fe E,Q E, R E,. Let e;e, = f; + d;e, where
fieEEQE,QE, and d,e Q. Moreover, (¢ + e, + e)e, = e, — € =
(fi + fo + fo) + (d: + dy + ds)e,. Since ¢, —ei = — f, d, = dy = d; = 0.
This implies that F, Q@ F, ® E; is a three-dimensional right ideal.

(7d) Suppose that e, = 0, the other e/s are not 0, and e, and e,
have the same sign opposite that of ¢,, Let 0 < me E,. Then ¢ = ke,
e = ke, »* = kn and k, and k, have the same sign. Moreover F, Q E,,
E,® E, and E, Q E, R E, are subalgebras of Q..

Let em = ae, + bn. Then en = k.en = akye, + be,n and en® =
ke,n = aen -+ bkn, so be,n = bkn and aen = ake,, Thus emn =0 or
e,n = ke,, or e = k., Similarly for em, ne,, and ne,.

(i) Suppose that e;n = 0. If en = 0 or en = kn, then Qn = Ej;
so em=ke,k+0, and emn =n — ke,, For some z,y,z€Q@, 6, =
we, + ye, + zes,  Then eem =0=1Fk(x —=ze +2zn,2=2=0, and
e.6,€ K,. By a similar calculation ne,c E,, whence Q,¢, = E,.

(ii) Suppose that emn = ke,, Then emn = ke, would make Q.n
three-dimensional, so en = k. Both k and k,, by (i), are different
from 0. Now

€6, = Xe; + Y&, + 26,
e.on = ke, = k(y — 2)e, + (z — 2k, + ak)n, x =2=0,

and ee, = ye,. If ne, = ke,, then Q.e, = F,, so ne, = k. Finally,
ne, = ke, which yields ne.e, = ke,e, = yne, = yk.n = kye,, and e,e, = 0.
By symmetry, e,e, = 0, whence ¢,Q, = E,.

(ili) Suppose that e,n = k.n. Then en = k,n would make Q,n = Ei;
so e = ke, and we are back to case (ii).

(7e) Suppose that Q. ~E R E,QRQE,QRE, E, #0, 1=¢ + e,
e, <0<e, and ¢;e E;,., Let 0 < myc E, and 0 < n,€ F,.

Then n? = k;n;, and we may assume k;, = 0 or %k, = 1. Suppose,
for example, that #; = 0. Since E;® E, is a subalgebra of @, nn; =
an, + bn, for some a,bec Q; 0 = nm: = bnm, yields nm,c E, Since
E Q E,Q FE; is a subalgebra of Q,, en, = xe, + ye, + zn,, and eni =
0 = 2en; + yen,. Since xe, <0 and ye, < 0, wen, = ye,m, = 0. In
particular, @ = 0. If em, = 0, then 0 = en; = n, > 0, so y = 0 also.
Thus Q.n; = E..

We may thus assume that n, and %, are idempotents. This time
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nym, = ang + bn, yields bnm, = bn, and anm, = an,. Either a =0 or

= 0. Suppose a = 0. Calculate emn, = xe, + ye, + z2n,, en? = en, =
xem, + yen, + 2n,, so (1 — 2 + ylem, = (y + 2)n,. Since nym, € K,
em, ¢ B, soy=2=0and v =1; ie., en,=e,.

If nym, # 0, then nym, = n,. Calculate en, = ae, + be, + ¢n,, from
which enm, = e, = e, = ae, + b(n, — e) + en,. Thisyieldsb=¢ =0
and e¢,n, = ¢,. Similarly ee, = ae, + be,, from which een, = e,(1 — ¢,) =
aem, + ben, = ae, + b(n, — e). Since eic B\, Q K, b =10. Thus ee,
and ¢ = ¢, — 6,6, € E,, whence ¢,Q, is one-dimensional,

We must have n;n, = 0, and, similarly, nm, = 0. Now enm, =
em, = 0, although, as in the calculation for emn,, en, = e,.

The referee is responsible for an important change in the statement
of the theorem. Having detected an error in the original version of
(7b), he suggested as a counter example the matrices f; now listed
there.
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