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ON CONTINUITY OF FUNCTIONS WITH VALUES
IN VARIOUS BANACH SPACES

WALTER A. STRAUSS

In the discussion of weak solutions of certain kinds of
partial differential equations, a crucial point, which is iso-
lated in this paper, concerns the proof of identities of energy
type and of the continuity of the solutions, which two ques-
tions are intimately related. The continuity referred to is
with respect to a distinguished independent real variable t,
the other variables being suppressed into some Banach space.

In § 2 a simple argument shows that an essentially bounded
function of t with values in a space V is automatically weakly
continuous in V provided it is weakly continuous in some larger
space.

In § 3 conditions are found under which a square-integrable
function u(t) with values in V is strongly continuous in V
(Theorem 3.3). Roughly speaking, the main condition is that
there exist self-adjoint linear operators A(t) coercive with re-
spect to V such that A(-)u(-) and du/dt lie in spaces which are
dual to each other.

The proof is based on an energy identity (Theorem 3.1). Theorem

3.3 has application to certain equations of the form

(1.1) A(t)u(t) = (possibly) nonlinear terms in dujdt

(cf. [5]).

The analogous strong continuity and energy problems for equations

like (cf. [4])

(1.2) d2u/dt2 + A(t)u(t) = (possibly) nonlinear terms

are considered in §4. These results are used in [6],

Torelli [7] solved these problems in the case of linear equations

(1.2). Partial results for the nonlinear case of (1.2) were obtained in

[4] and [1] and for (1.1) in [5]. Here Torelli's method is generalized

so as to be applicable in the nonlinear case of (1.2) as well as to (1.1).

In each of these cases variants of a regularization procedure of Lions

and Prodi [3] for the Navier-Stokes equations are used. Lions [2] also

proves a different case of Theorem 3.2.

2* Weak continuity* We begin with some definitions. If V
is a Banach space and Ω is a real closed interval then by LP(Ω; V)
we mean the space of all strongly measurable functions u on Ω into
V such that
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| | % | | * = ( \u(t)\$dt < oo

if 1 g p < oo and

|| w || = ess sup {| w(£) |F, ί e β }

if p = oo. By CW(Ω; V) (resp. CS(Ω; V)) we mean the subspace of
L°°(Ω; V) consisting of those functions which are a.e. equal to weakly
(resp. strongly) continuous functions with values in V. Primes on a
function of t denote (weak) derivatives with respect to t. For a space
F, V denotes the "dual" space of all continuous conjugate-linear func-
tions on V.

THEOREM 2.1. Let V and Y be Banach spaces, V reflexive, V a
dense subset of Y and the inclusion map of V into Y continuous.
Then

L~(0, T; V) Π Cw(0, T; Y) = Cw(0, T; V) .

Proof. Let u be weakly continuous with values in Y and
weL°°(0, T; V). We must show that it is also weakly continuous
with values in V. (The converse is obvious.) It suffices to prove
that there is a constant M such that

(2.1) u(t) G F and I u(t) \v ^ M for all t e [0, T] .

Indeed, if (2.1) is true we can choose from any convergent net tn—>t0

of numbers [0, T] a subnet tm such that u(tm) converges weakly in V.
Since u is weakly continuous with values in Y, the limit of this subnet
must be u(t0). Therefore u(tn) —> u(t0) weakly in V.

To prove (2.1) we define approximate delta-functions η2(t) in the
usual way: let ηQ(t) be a nonnegative even C°°-function on the real
line with compact support and integral one; define ηζ{t) = e~ιηQ(tlε)
for ε > 0. Now consider 0 < t < T so that (ηe*u)(t) e V for suf-
ficiently small ε. Let M be the norm of u in L°°(0, T; V). Then

I (7}e*u)(t) \v ^ \Ύ]Z{S) I u ( t — s ) \ v d s ^ M .

So there exists a net of ε's such that (ηe*u)(t) converges weakly in
V. On the other hand, for all v e Yf,

((ηε*u)(t) — u(t), v) —>0 as ε-+0

since (u(s), v) is a continuous function of s. It follows that M(£) e V,

(ηε*u)(t)—>u(t) weakly in V
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and I u(t) \v S M.
To prove (2.1) for the case t = 0, we apply a similar argument

with (r]z*u)(t) replaced by (ηs*u)(ε); and for t — T, we consider

COROLLARY 2.1. Let V and W be Banach spaces, V reflexive,
both contained in some fixed linear space, and V (Ί W dense in V
and in W. If ueL°°(0, T; V) and u' = du/dt e 1/(0, T; W), then there
exists a weakly continuous function on [0, T] with values in V which
is equal to u almost everywhere.

Proof. The space Y = V + W satisfies the conditions of Theorem
1. The assumptions on u imply, in particular, that ue U(0, T; Y) and
uf 6 1/(0, T Y). Therefore u is weakly continuous with values in Y,
and Theorem 2.1 may be applied.

3* Strong continuity• We are given a reflexive Banach space
V and a family of hermitian linear operators A(t): V—+V'(0^tST)
which are weakly continuously differentiable functions of t. If
ue L\0, T V), we denote by Au the function t—>A(t)u(t) and by
A'u the function t —• \dA(t)jdt\u(t). By the uniform boundedness
principle, A(t) and A'(t) — dA(t)/dt are uniformly bounded operators
from V to V. The pairing between elements of V and V is denoted
by ( , ).

Secondly, we are given another Banach space W as well as a
linear space containing both V and W such that V Π W is dense in
V and W.1 In addition, Z is a Banach space such that

Zd 1/(0, T; W) , Z'a L\0, T; W)

as dense subsets with continuous inclusion. If / e Z', u e Z and </, u)
indicates the pairing, we assume that (f(t), u(t)) [pairing in W] is
integrable and

(3.1) </, u> = [(fit), u(t))dt .
Jo

Furthermore, we assume that multiplications by step functions map
Z into Z and that translations in t are continuous in the strong
operator topology on Z (where functions are extended to be zero
outside [0, T] when necessary).

THEOREM 3.1. Let u e L°°(0, T; V),2 u' = du/dt e Z and Au e Z\
Then for every te[O, T]

1 Elements of V and W are identified if they agree on V ΠW.
2 Whence AueL°°(0, T; V) and ur is a distribution with values in V.
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'A R [((3.2) (A(t)u(t), u(t)) - (A(O)u(O)f u(O)) = ['(A'u, U) + 2Re [(An, ur) .
Jo Jo

Proof. By Corollary 2.1 we may assume that u is weakly con-
tinuous with values in F.3 We shall prove (3.2) for a fixed t = ί0,
0 < ί0 ^ T. Let #0 be the characteristic function of the interval
[0, ί j ; for small δ > 0, let θ(t) = 0δ(£) be 1 for ί e [<?, ί0 - δ], zero for
t$ (0, ί0) and linear in the intervals [0, δ] and [£0 — δ, tQ]m Next ^(ί) =
γ]z(t) is defined as in the proof of Theorem 1 as an approximate delta-
function.

For any C°°-function v with values in V with compact support,
we have

0 = Γ d(Av, v) = <A'ι;, v> + 2Re<At;, v'y .
J-oo

Putting v ~ Ύ]* (θu) and noting that

v' = 37 '*^ = η*(θ'u) + Ύ]*(θu') ,

we have

0 =

2Re <j] * βA^,(3.3)

We shall examine each term in (3.3) separately as Θ — θ5 —•> θQ and η
is fixed. (The idea of first letting δ->0 is due to Torelli [7].)

Since ηij) e L°°(R) and θ—>θ0 in U(R) as δ —>0, we have η{j)*θu—*
ηU)*θQu in L°°(.K, F) strongly 0' = 0, 1). Therefore, as <5 —> 0, 6> may be
replaced by β0 in the first and last terms in (3.3). The same is true
of the second term in view of Lebesgue's convergence theorem because
<ueL\0, T; W) and AueL\0, T; W).

As for the third term in (3.3), we note that rj*rj*[(θ — θo)Au]—>0
in L°°(R, V) strongly while

ί θ'(t) I dt = 2 .

Thus <τ]*(θ — e<)Av,,7)*e'uy-+0 as δ—> 0. On the other hand, since
((7]*η*θ0Au)(t), u(t)) is a continuous function of t,ζr)*Ύ)*θQAu,θru}
tends to

((?7*)7*#oAi6)(O), w(0)) — ((η*η*ΘQAu(tQ), u(t0)) .

Hence the third term in (3.3) also tends to the latter expression.
Writing F — Au, we conclude that

Thus in (3.2), we are referring to the weakly continuous function.
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(0 = <A'fy * θou), η * #ou> + 2Re {<yj * 0OF, rj * #0^'>

(3.4) + ((η*η*θQAu)(Q), u(0)) - ((η*η*

ou) — Ύ] * θ0Au, if * #ou>}

We now consider the convergence of each term in (3.4) separately
as ε—>0 (η~ηs). Since 7}*θ0u—>θ0u strongly in U(R, V), the first
term tends to (A'θQu, θouy. By a standard argument using the as-
sumption that translations in t are continuous in Z, η * η * θovf —> /90u'
strongly in Z. Thus the second term tends to 2Re (ΘOF, θou

fy. Now
if we let p — pz — η2*-η2, then 0 ^ p(t) = Oίε"1), the support of /> is
an interval of length O(ε), and

Therefore for sufficiently small e,

= \tOp(t)((Au)(t0 - ί) - (Au){Q, u{Q)dt .
JO

Since the inner product within this integral is a continuous function
of ί, we conclude that as ε—> 0,

((p2*θtAu)(t0), u(t0)) — i-(A(ίo)w(ίo), w(ί0)) .

In a similar way we find the same result with t0 replaced by 0.
The proof is terminated once we show that the last term in (3.4)

tends to zero with ε. Since

{eη't*v} is bounded in U(R, V), where we have put v — θou. But for
fixed εlf ε ^ ε * ^ * ^ ) = s(ηz*η'ζi*v) tends to zero strongly in L2(R, V) as
ε -» 0. It follows that

SΎ][ * v —» 0 strongly in U(R, V) .

On the other hand,

[A{ηz*v) - ηe*(Av)](t) = \[A(t) - A(t - s)]ηζ(s)v(t - s)ds .

Therefore

\\A(V**V) -Vz*{Av)\\L2{vl) = O(e||g78*v||za(F)) = O(e) .

Thus the last term in (3.4) tends to zero with ε.
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COROLLARY 3.1. (A(t)u(t), u(t)) is a continuous function of t.

THEOREM 3.2. Assume in addition that (c > 0, λ real):

(3.5) (A(t)v, v) + λ I v \2

X ̂  c I v \\

for all v e V, where X is some Banach space containing both V and
W with continuous inclusions. Then the function u in Theorem
3.1 is strongly continuous with values in V.

Proof. Suppose tn-^t in [0, T]. Then \u(tn) - u(t)\x-+0 since
both u and vf lie in L\0, T; X). By Corollary 3.1,

(A(t)u(tn), u(tn)) - (A(t)u(t), u{t)) .

Therefore, by the weak continuity

(A(t)(u(tn) - u(t))f u(tn) - u(t)) -> 0 .

By (3.5), \u(tn)-u(t)\r-+0.

THEOREM 3.3. In Theorem 3.2 the assumption u e L°°(0, T; V)
can be weakened to ueL\0, T; V).

Proof. We begin with identity (3.3), but fix θ = ΘB and let ε-*0
first. By arguments similar to those following (3.4), (cf. [4, 5]), we
find

(3.6) 0 = (θA'u, θu> + 2Re<W, θu'y + 2Re<#Au, θ'u) .

Next, as d—> 0, the first two terms in (3.6) approach the right hand
side of (3.2) with t = t0. However, the third term may not converge
since the function t —> (A(t)u(t), u(t)) is not known to be continuous.
We alter the definition of θ as follows: θ{t) = θs(t) is 1 in [t, + δ, t0 - δ],
zero outside of (tl910) and otherwise linear, where 0 < tx < tQ < T. Then
letting 3-+0 in (3.4) gives for almost every t± and t0.

(A(ίo)w(ίo), u(Q) - (AitJuQi), ufo))

= \t0{(A'u, u) + 2Re (Au, u')} .

In particular, the function t —+ (A(t)u(t), u(t)) is essentially bounded.
From (3.5) it follows that u e L°°(0, T; V) and so the situation is
reduced to that of Theorem 3.2.

4* Solutions of hyperbolic equations* The assumptions are
the same as in § 3 except that we are also given a Hubert space H
containing F, where V is dense in H and the inclusion is continuous;
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H and W are contained in some fixed linear space. The analogue to

Theorem 3.1 is:

THEOREM 4.1. Let u e L~(0, T; V), W e Z n L~(0, T; H) and

(4.1) u" + Au = FeZ' + L\0, T; H)

where uf = dujdt, u" = d2u/dt\ Then for every t e [0, T]

(tt'(ί) \% + (A{t)u(t), u(t)) - I u'φ) \2

Ξ - (-4(0)^(0), u(0))

(4 2) f *
v β ; ι 'A'w, %) + 2Re

Proof. By Corollary 2.1, ueCw(0, T V). By (4.1),

u"eZ' + Cw(0, Γ; F') c ^ ( 0 , T; W + V) .

Thus Corollary 2.1 may be applied again to infer that vl e Cw(0, T; H).
Using the notation θ — θ8 and rj — rjz as before, we have

(4.3) - 2Re
fy + <7]*θ0u',

Since ηe L~(R), θ~+ΘQ in ! / ( # ) and ί' is bounded in Z/(i?) as ^ 0
in addition to the fact that v! e Cw(0, Γ; H), the last term in (4.3)
tends to

(4.4)

and the next-to-last term tends to zero as δ —> 0. Thus, if we add
(4.3) to (3.3) and let 3 —* 0, we find that (3.4) holds except for the
addition of expression (4.4) to its right-hand side, where F = u" + An
now.

Next we let ε —• 0. Since

w W ί o - 0 - ^'(*o), u'(to))dt

tends to zero with ε, the terms (4.4) approach

I u'(0) \2

S - I n\Q γE ,

Thus, referring to the proof of Theorem 3.1, we find (4.2) (with t = tQ).

COROLLARY 4.1. | u\t) \2

ff + (A(t)u(t), u(t)) is a continuous func-

tion of t.
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THEOREM 4.2. Assume in addition that (3.5) holds for all
v 6 V, with X = H. Then u e Cs(0, T; V) and u' e C.(0, T; H).

Proof. If tn~->t in [0, T] then

I u\tn) \*s + (A(t)u(tn), u{tn)) — I u'(t) \\ + (A(t)u(t), u{t)) .

Hence by the weak continuity,

I u'(tn) - u'(t) \*H + (A(t)(u(tn) - u(t)), u{tn) - u(t)) - 0 .

But since %eCs(0, T; H) and in view of (3.5),

ϊίϊn (A(t)(u(tn) - u(t)), u(tn) - u(t)) ^ c ϊϊϊn | u(tn) - u(t) \2

V .

Hence | u'(tn) - w'(ί) U -> 0 and | u(ίΛ) - u(t) \v->0.

THEOREM 4.3. In Theorem 4.2 the assumptions u e L°°(0, Γ; F)
u' G L°°(0, Γ; ί ί) may be weakened to ue L2(0, T; V) and u' e

L2(0, T; H), if Fe Z' + L2(0, T; H).

Proof, (cf. Theorem 3.3.) Letting ε-*0 first, we have (3.6) but
with the additional term

Then letting δ —»0 we conclude that the function

is essentially bounded. Since ue Cs(0, T; H), it follows that v!e L°°
(0, T H) and ^GL°°(0, T V).

REMARK. A slight variation of the proof shows that under the
same conditions,

φ(t)[\u'(t)\*s + (A(t)u(t), U(t)]

( 4 β 5 ) - φΦ)[\ u'(0) \2

S + (A(O)w(O), u(0))]

w) + φ'\ u' \2

H + 2<p Re (F, u')} ,[
Jo

for 0 ̂  ί ^ T and any C'-function 9> on [0, T]
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