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TOPOLOGIES WITH THE SAME CLASS
OF HOMEOMORPHISMS

YUu-LEE LEE

Given a topological space (X, %), let H(X,Z/) be the
class of all homeomorphisms of (X, Z/) onto itself. This
paper is devoted to study when and how a new topology 7~
can be constructed on X such that H(X, %) = HX, 7).

Everett and Ulam [1, 2] posed the problem in 1948. No results
appeared until 1963, when J. V. Whittaker [3] proved the following.

THEOREM. Suppese X and Y are compact, locally Huclidean
mantifolds (with or without boundary) and let H(X) and H(Y) be
the groups of all homeomorphisms of X and Y onto themselves re-
spectively. If a 1s a group isomorphism between H(X) and H(Y),
then there exists a homeomorphism B of X onto Y such that

a(h) = BhB™ for all he H(X) .

From this theorem, we have immediately a partial answer to
Ulam’s problem.

COROLLARY. Suppoese (X, %) and (X, 777) are compact, locally
Euclidean manifolds, with or without boundary, with the class of
homeomorphisms H(X, z/) and H(X, ) respectively. 1f H(X,Z/) =
H(X, 77), then (X, %) is homeomorphic to (X, 7").

But there do exist many topologies ¥~ such that H(X, %) =
H(X, ") and (X, %) is not homeomorphic with (X, 7). The purpose
of this paper is to construct such topologies. There exist many
nonhomeomorphic topologies for the real line which possess the same
class of homeomorphisms as the real line with its usual topology.

2. Let (X,%) be a topological space and A a subset of X,
We denote the class of all homeomorphisms of (X, Z/) onto itself by
H(X, z/) and set

H(A) = {f@): fe H(X, z), v e A} .
We shall construet many new topologies #.(awe D) for X such that
H(X, %)= H(X, ;) for each «¢cD. By X — A, Cl(4), Int(4), and
Bndy (A), unless otherwise stated, we always mean the complement,

closure, interior, and the boundary of A with respect to the original
topology %.

(i
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LEmMMA 1. Let (X, %) be a topological space and let P(V) be a
topological property possessed by certain subsets V of X. If 7 =
{V:P(V)} is a topology for X, then H(X, Z/)C H(X, 7).

Proof. Trivial,

LEMMA 2. Let 2 and < be two topologies for X such that
Ucay if and only if UyVe & fm@ all nonempty V in . Then
H(X,z) D H(X, 7).

Proof. Suppose fe H(X, 7 ), Ue% and V=@ in . Then
SHVUSIU) = (V)ulUe
Hence
VufU)e 7° and f(U)ez .

Therefore f~ is a continuous mapping of (X, %) onto itself, and a
similar argument proves that f is a continuous mapping of (X, %)
onto itself, Therefore fe H(X, %).

THEOREM 3. Let (X, %) be a locally compact space. Let P(V)
mean that Vezs and X — V is closed and compact. Then

7 ={U:U =g or P(U)}
is a topology for X and H(X, Z) = H(X, 7).

Proof. It is clear that 7" is a topology for X and, by Lemma 1,
H(X,zz)c HX, 7).

If (X, %) is compact, then 2 = 7 Therefore we may assume
that (X, ) is not compact.

IfUez,V+@ and Ve ¥, then X — V 1is closed and compact
in (X, %), and hence X — (UU V) is closed and compact in (X, ).
Therefore Uy Ve 7

Conversely, suppose U¢ 7. Then there exists « in U — Int (U)
and a neighborhood W of 2 such that Cl(W) is compact in (X, %)
and Cl(W) == X. Moreover xcCl(C{W) — U). Hence X — CI(W) is
a nonempty element of %7] and (X — ClL(W))UU¢ 2. This implies
that X — Cl(W)uUg & since ¥ C Z.

By Lemma 2, we have H(X, %) c H(X, 7).

The following corollary is a generalization of Theorem 3, but the
pattern of proof is essentially the same.

COROLLARY 4. Let (X, Z/) be a locally compact or a regular
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space and let A be a closed locally compact subset of X such that
JS(A) = A for all f in H(X,Z). Let P(V) mean that Ve Z/ and
A~V =BUC where B is a closed and compact set and C 1is a
closed and nowhere dense set and Card(C) < a for some fized infinite
cardinal number . Then

7 ={U:U =@ or P(U)}
is a topology for x and H(X, zv) = H(X, 7).

Proof. It is easy to check that <¢” is a topology for X and
P(U) is a topological property and by Lemma 1, H(X, ) C H(X, 7).

If (X,%) is compact, then A and A — V are closed compact sets
for any open set V. Hence A -V =(A-V)U® and % = ¥.
Therefore we may assume that (X, %) is locally compact but not
compact. If Ue %, then it is clear that Uy Ve & for any non-
empty V in 7 If U¢ %, then there exists z in U — Int (U). Let
W be a closed compact neighborhood of z we have W= X and
2eCl(W —-U). Since A—(X—-—W)=(ANW) is closed compact,
X — W is a nonempty element of 2 and (X — W)uU¢e¢%. This
implies that (X —W)uUg¢ ¥ since ¥  C %. By Lemma 2 we have
that H(X, ) = H(X, 7).

If (X,%) is regular, then Uez implies UuUVe ¥ for all
nonempty V in 277 is still true. If U¢ %, then there exists z in
U—Int(U). If xe A, then since A is a locally compact subset of
(X, %), the argument is the same as above., If x¢ A, then there
exists a closed neighborhood W, of = such that W, N A = &. Hence
A—-(X-Wy)=ANW,=@ and X — W, is a nonempty element in
2. But (X — W, uU is not in %, hence it is also not in 27

THEOREM 5. Let A be a closed subset of a first countable
Hausdorff space (X, 7/) such that f(A) = A for each f in H(X, %)
and A contains mo isolated point relative to the relative topology
and suppose the set I of all isolated points of (X, Z) is closed. If

v ={Uezz: U= or ClLUNA) =A4},
then (X, 77) is a topological space and H(X, 7zv) = H(X, #).

If A = X, then the condition that 4 contains no isolated point can
be dropped.

Proof. It is clear that (X, ") is a topological space and, by
Lemma 1, HX, Z)c H(X, 7"). Also if UecZ and V+# @ in 7]
then Uy Ve &
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Suppose U¢ Z7. Then there exists p, in U and a sequence {p,} in
X — U such that {p;} converges to p, and p,¢ I for each 7. Therefore

(X—{pi:i:0,1,2,---})e7”
but
UU(X—{pi:iZOylyzy"'})e %.

Hence Ue 7/ if and only it Uy Ve 9 for all nonvoid V in #. By
Lemma 2, we have H(X, ) > H(X, ).

By similar arguments, we can prove the following theorem since in
each case the only property required is that X—{p;: 4 =0,1,2,-.-}e ¥;

THEOREM 6. Let (X,%), A and I be as in Theorem 5. Let
P(V) mean that Ve z,Cl(VNA)=A and A~V is compact, P,(V)
mean that Ve z/,CL(VNA)=A and A~V 4is countably compact,
Py(V) mean that Ve z,Cl(V N A4) = A and Card (4 — V) = a where
a s any fived cardinal number greater tham or equal to W, and
P(V) mean that Ve Z,Cl(VNA) =A,Card(A — V)<a and A -V
vs compact. Then 7; ={U:U = @ or P(U)} (i =1,2 3,4) are to-
pologies and H(X, 7/) = H(X, ;) (i =1, 2, 8, 4).

The condition that the set I of all isolated points in (X, %) be
closed is necessary in the above theorems. For let

X:[—l,()]u{l:nzl,z,.--}
n

with the relative topology inherited from the real line, and let A =
[~1,0]. Let f(x) = —2 — 1 when ve[—1,0] and f(1/n) = 1/n for all
n. Then fe H(X, 277) and fe H(X, &) but f¢ H(X, ). But we can
set another condition in order to permit that I has exactly one limit
point.

THEOREM 7. Let A be a closed subset of a first countable
Hausdorff space (X, z/) such that f(A) = A for each f in H(X, z)
and A contarns no isolated points relative to the relative topology
and suppose the set I of all isolated points of (X, Z) has exactly
one limit point e and I is compact. Suppose in addition that
fle)=¢ for any fin HX — I, | X — I). If

7 =Uez:U=g or CHUNA =4},
then (X, 777) is a topological space and H(X, 7/) = H(X, 7).

If A= X, then the condition that A contain no isolated points
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can be dropped.

Proof. It is clear that ¢~ is a topology for X and by Lemma 1,
H(X, zzyc H(X, 7).

Let fe H(X, % ). Since {p}uUVe 2 for all nonvoid V in &~
if and only if pel, and in case A= X, peV for all nonvoid V
in ° if and only if pel, it follows that f(I) =1 and hence
fIX—DeHX-—-I 2 |X—1I. If ¢ is not an isolated point of
X —1I, by Theoremb, HX— I, 7 | X—I1)=HX -1,z | X —I) and
hence f(¢) =e. If f¢ H(X, Z ), then either there exists a sequence
{p;} and p, in X such that {p;} converges to p, but {f(p,)} does not
converge to f(p,), or there exists a sequence {p;} and p, in X such
that {p;} does not converge to p, but {f(p;,)} converges to f(p,). In
the first case, if p, # ¢, we may choose p;¢ I for each ¢. Then {p;}
converges to p, in (X — I, Z| X — I) and {f(p;)} does not converge
to flp,) in (X — I, Zz| X — I) and hence

fX—I¢eHX—-IL % X-D)=HX-1,7|X-1).

This is a contradiction. If p, = ¢, then since I is compact, every Z~
neighborhood of e contains all but a finite number of the points of I.
If all subsequences of {p;} are in I, then {f(p;)} converges to f(e) = e.
If there is a subsequence {p,,}C X — I such that {p,} converges to
e but {f(p,)} does not converge to e, then f¢ H(X — I, ZZ| X — I).
This is alsc a contradiction. Therefore f is a continuous function of
(X, %) onto itself. By a similar argument /' is continuous. Therefore
H(X, Zz) = H(X, 7). If ¢ is an isolated point of X — I, then e¢ A
and ¢ is the only point in X such that every Z“neighborhood of e
contains all but finite points of I, but in case X = A4, ¢ is the only
point in X — I such that Ve ¥ if and only if VU {ele ¥ for any
nonempty V in 2. Hence fle) =e. A similar argument applies to
HX—1I,7|X — 1), and we also have H(X, %) = H(X, 7).

We can see that the theorem analogous to Theorem 6 also holds.

THEOREM 8. Let (X, %), A, I, and e be as in Theorem T. Let
P(V) mean that Ve z,ClHV N A)=A and A—V is compact, P(V)
mean that Ve 7, Cl{VNA)=A4 and A —V 1is countably compact,
P(V) mean that Ve z,Cl(VNA) = A and Card (A — V) < a where
a is any fived cardinal number greater than or equal to Y,. Then
Z;=U:U= @ or P(U) (i =1, 2,3) are topologies and H(X, %) =
H(X, 7)) (1 =1,2,3).

If A = X, then the condition that A contain no isolated points
can be omitted.
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In Theorem 7 and Theorem 8, the condition f(¢) = ¢ for any f in
H(X — I, Zz | X — I) is necessary as shown in the preceding example.
If X = A, then the condition that I be compact is also necessary since
otherwise there exists a neighborhood U of ¢ such that Card (I — U) =
W, and any one-to-one mapping f, such that

FIX—TeHX—-ILz|X—I)

and such that f maps a sequence of points in I — U to a sequence
of points converging to ¢, is in H(X, ¥") — H(X, %'). And if I has
more than one limit point, let ¢, and ¢, be any two of them. Then
any one-to-one mapping f such that | X —Ie HX — I,z | X — I) and
such that f interchanges a sequence of points {p;} converging to e, and
a sequence of points {g;} converging to e, is in H(X, ¥") — H(X, Z).
But if A # X, the conditions that I be compact and that I has
exactly one limit point can be dropped with a little modification of
proof. However we have the following theorem.

THEOREM 9. Let (X, %) be a compact Hausdorff space and let
Do € X such that f(p,) = p, for any f in H(X, ). Let P(U) mean
that Ue 7z, p,¢ U and (X — p,) — U s compact. If

7 ={U:U=Xor U=8 or P(U)},
then (X, 777) is a topological space and H(X, zv) = H(X, 7).

Proof. It is clear that (X, 27) is a topological space and
HX,Z)C H(X, > ) by Lemma 1, If p, is an isolated point, it is
also clear that H(X,%Z ') = H(X, #"). Hence we may assume that p,
is not an isolated point.

Let Ac X — p,, then A4 is closed and compact in (X, %) if and
only if A is closed and compact in (X — po, Z | X — o).

If feH(X, %), then f(p,) = p, since p, is the only point in
(X, 7°) such that p, has exactly one neighborhood, namely X. Hence
f1X —peHX — p,, 7 | X — p5). By Theorem 3 and the above dis-
cussion, f| X — poe H(X — py, ZZ | X — p,). If Ue Z and p,e U, then
Uez/ | X—p,and hence f(U)e x| X — v, and f(U)e z. Ifp,ec UcZ,
then X — U is closed and compact in (X — p,, | X — p,) and (X —U) =
X — f(U) is closed and compact in (X — p,, 7| X — p,). It follows that
f(U) e 7 and similarly f~*(U) € . Hence we have H(X, Z)=H(X, 7).

THEOREM 10. Let (X, Z) be a compact Hausdorff space without
isolated points and let p,e X such that f(p,) = p, for any f in
H(X, /). Let P(V) mean that Ve Z and p,cV or Ve ¥ and
(X — p) — V compact. If
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7 ={U.U =g or PXU)},
then (X, 7) 1s a topological space and H(X, Zr) = H(X, ).

Proof. The argument is similar to that in Theorem 9. The only
thing we have to show is that f(p,) = p, for any f in H(X, ¥7), and
this follows from the fact that p, is the only point in X such that
{po} UV e & for any nonvoid V in %7
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