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ASYMPTOTICITY AND SEMIMODULARITY
IN PROJECTION LATTICES

DAVID M. TOPPING

In this note it is shown that every von Neumann algebra
has a semi modular projection lattice.

The notions of a dual modular pair of projections and
nonasymptoticity, which were shown by Mackey to coincide
in a type I™ factor, are compared globally. A von Neumann
algebra containing no asymptotic pairs of projections is char-
acterized as the direct-sum of an abelian algebra and a finite-
dimensional algebra.

Two projections e and / in a von Neumann algebra A are said
to form a dual modular pair (relative to A), written (β, f)DM, if
(e U /) Π 9 = e U (/ Π g) whenever g is any projection in A with g ^ e.
This notion, of course, makes sense in any lattice. A modular lattice
is one in which every pair is a dual modular pair. According* to
current fashion, an orthocomplemented lattice (with 0 and 1) is called
orthomodular if each element forms a dual modular pair with its
orthocomplement. Following this trend, an orthomodular lattice is
termed semίmodular if the relation of dual modularity is symmetric
[6] (p. 402).

The importance of semimodularity in the theory of orthomodular
lattices became apparent when Mackey discovered that two projections
e and / form a dual modular pair in the ring of all bounded operators
if and only if the vector sum of e and / (we confuse projections with
the subspaces onto which they project) is a closed subspace of the
underlying Hubert space. From this, it is immediate that every type
I factor has a semimodular projection lattice.

Recent work of Ramsay [7] (p. 25, Theorem 5.4) shows that any
dimension lattice having no type III summand is semimodular. This
result specializes at once to show that the projection lattice of a
semifinite von Neumann algebra is semimodular. In the other direc-
tion, MacLaren [6] has made an excellent case for semimodular lattices
by deriving dimension lattice structure from semimodularity assumptions.

The case of type III has continued to be shrouded in mystery,
largely because semimodularity is traditionally associated with the
existence of dimension functions and covering conditions. We show
in § 2 that every von Neumann algebra has a semimodular projection
lattice. A primary tool in our proof is the characterization of dual
modular pairs given by Foulis [4] (p. 81, Theorem 28) in the context
of Baer *-semigroups.
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A natural objection arises: What (if any) importance can be
attached to semimodularity in the case of a type III dimension lattice,
where modularity and dimension functions are so obviously lacking?
The answer, we believe, lies in marking out the boundaries of a "more
general lattice project'' (i.e. more general than von Neumann's con-
tinuous geometries) suggested by Kaplansky. It seems desirable to
know whether one should assume semimodularity in trying to bring
some order to (for example) the chaotic perspectivity structure of the
general orthomodular lattice, especially in view of recent developments
(e.g. Fillmore's theorem on the transitivity of perspectivity in a von
Neumann algebra [3], and MacLaren's atomic horizontal sums [6],
where semimodularity fails).

Thus our contention is that semimodularity is a reasonable assump-
tions, at least if one agrees that projection lattices of von Neumann
algebras are the correct models on which orthomodular geometry should
be based.

Two projections e and / in a type 1^ factor form a dual modular
pair if and only if e and / are not asymptotic (i.e. the "angle between
e and / " is not zero). The situation in a general von Neumann
algebra is not so simple. For instance, in a finite continuous algebra
(type IIX), asymptotic pairs abound and all such pairs are dual modular.
We give a structure theorem for von Neumann algebras with no
asymptotic pairs in §4.

The author wishes to thank Peter Fillmore and Arlan Ramsay for
several stimulating discussions of semimodularity. He is especially
grateful to D. J. Foulis for suggesting the description of dual modular
pairs in Lemma 2 below.

2* Semimodularity• Throughout, A will denote a von Neumann
algebra. We call A (or more precisely, its projection lattice) semi-
modular if (β, f)DM implies (/, e)DM, for any two projections e,feA.
For x e A we write j2f(x) and &(x) for the left and right annihi-
lators, respectively, of x. We denote by LP(x) the orthogonal projec-
tion on the closure of the range of xf and by RP(x) the orthogonal
projection on the orthogonal complement of the null space of x. Thus
if p = LP(x), then pA = &(j2f(x)); and if p = RP(x), we have Ap =

LEMMA 1. For any two projections e and f in a von Neumann

algebra A, there is a symmetry (—s.a. unitary) seA such that

s(ef)s = fe.

Proof. Let a = e + / — 1 and set
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8 = RP(a+) - RP(a~) + (1 - RP{a)) ,

where α* = -J(| a\ ± a) and | α | = (α2)1/2

β Then s2 — 1 and α = s \ a |.
Now e and / commute with | a |2 = α2 and since a positive operator
and its square root commute with the same operators, e and / commute
with I a I. Also | a \ = sa = se — s(l — /) and hence sef = sα/ = | α | / =
/] a I = /es so that s(β/)s = fe.

In his extensive studies of Baer ^-semigroups, D. J. Foulis has
introduced the notion of a "range-closed" element [4]. In a von
Neumann algebra A, we say that x e A is range-closed (relative to A)
if for any projection g e A, Ag c: j£f(&(x)) and J&(xg) = j£f(x) imply
that Ag = J*f{&{x)). The importance of this notion is clear from:

LEMMA 2 (Foulis). For two projections e and f in a von Neumann
algebra A, the following are equivalent:

(1) (β, f)DM relative to A.
(2) /(I — β) is range-closed relative to A.

For the proof, we refer to Foulis' paper [41 (p. 81, Theorem 28).
We shall also need a result of E. A. Schreiner [8] (Theorem 9)

which shows that an (apparently) stronger kind of symmetry implies
semimodularity. It is this stronger property that we shall show holds
for von Neumann algebras.

LEMMA 3 (Schreiner). Let L be any orthomodular lattice. If
(e, f)DM implies (1 — /, 1 — e)DM, for all e,feL, then L is semi-
modular.

Putting these facts together, we have

THEOREM 1. The projection lattice of any von Neumann algebra
is semimodular.

Proof. By Lemmas 2 and 3, it is enough to show that ef is
range-closed implies that fe is range-closed.

According to Lemma 1, there is a symmetry se A with s(ef)s = fe.
The mapping θ from A to itself defined by θ(x) — sxs for x e A, is a
*-automorphism of A taking ef to fe. But any *-automorphism takes
range-closed operators to range-closed operators (this simple observa-
tion was supplied by the referee) and the proof is complete.

3. An application* All remarks in this section are valid in
any semimodular orthomodular lattice, but we prefer to phrase them
in the language of operator algebras. The following simple fact is
basic.
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LEMMA 4. Two commuting projections in a von Neumann algebra
form a dual modular pair.

Proof. Given projections e,feA with ef = fe and g e A a pro-
jection with g Ξ> e. Then

But (β - ef) _]_ /, so (e - β/, f)DM. Also g ^ e ^ e - ef and hence

as required.
In particular, if β ̂  /, then (β, f)DM.

LEMMA 5. 1/ (e, #)DM, (/, g)DM and either (β, / U #)DΛf or
(/, e U flr)Z?Λf, ίλera (β U /, g)DM.

Proof. Let h^eVf. In case (e, / U g)DM we have

= e U (/ U (g Π fc)) = (e U /) U (flr Π h) ,

so (e U /, g)DM. In case (/, β U g)DM we have

((e U / ) U flf) Π Λ = / U ((β U flr) Π A)

= / U (β U (fir Π h)) - (β U / ) U (g Π λ)

and again we conclude (β U /, g)DM.

The next lemma shows that dual modular pairs can be "added"
in case enough orthogonality is present.

LEMMA 6. If (eif f^DM (i = 1, 2) and if (ex U f) _L (e2 U / 2 ),

Proof. Let e = βx U e2 and / = /x U /2. Since e2 JL (βx U Λ) we have
(β2, βi U fi)DM and the relations (e1? f)DM and (β2, fJDM together with
Lemma 5 show that (β, f^DM. Similarly, (β, f2)DM. By semimodularity
(Theorem 1), (Λ, e)ΰJlί (i = 1, 2). Next we assert that (e U /2, /O^M.
For if h ^ e U /2 then h^e2\Jf2 and

((β u Λ) u Λ) n h = ((β2 u /2) u (^ u Λ)) n h

- (β2 u /2) u ((β, u Λ) n A)

by the orthogonality hypothesis. Since h ^ e1? this last expression
reduces to
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O2 u /2) u (βi u (/x n h)) = (e u /2) u (/1 n A)

as desired. Free use of semimodularity and a final application of
Lemma 5 gives (e, f)DM.

Two projections e and / are said to be in position pτ if e Π (1 — /) =
0 = (1 — e) Π /. The proof of the next lemma, an exercise in the use
of orthomodularity, is left to the reader.

LEMMA 7. Any two projections e and f can be decomposed
orthogonally into e — e1 + e2 and f = f± + f2 where:

(1) e1 and /i are in position p';
(2) e2 _L f2; and

(3) foU/iUfoU/,).
Explicitly, e± = β - β Π (1 - / ) , Λ = / - (1 - e) Π /, β2 = e Π (1 - /)
α^ώ /2 = (1 - β) n /.

Our application is a new characterization of finite von Neumann
algebras.

PROPOSITION 1. For a von Neumann algebra A, the following are
equivalent:

(1) A is of finite class.
(2) Any two projections e, fe Am position pf form a dual modular

pair.

Proof. Since A is finite if and only if its projection lattice is
modular, (2) clearly follows from (1). For the converse implication,
one applies the decomposition of Lemma 7 and then the addition
property of Lemma 6.

4* Asymptotic projections* Two projections e and / with
e Π f = 0 a r e a s y m p t o t i c , w r i t t e n e\\f, i f s u p \ ( a \ β ) \ = 1, w h e r e
|| α: || = 1 = \\β\\, wee, β e /. We list some classical results surrounding
this notion. A good historical account of these ideas can be found in
[1] (p. 21, § 5).

LEMMA 8 (Murray, Lorch, Kober, Mackey). For two projections
e and f with e D / — 0, e # f if and only if the vector sum

{a + β: a e e, β e /}

is closed.

LEMMA 9 (Mackey [5]). The vector sum of e and f is closed if
and only if (e, f)DM relative to the ring of all bounded operators.
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Lemma 9 of course implies semimodularity in the case of a type
JL factor.

COROLLARY 1. If e -fr f, then (β, f)DM relative to any von Neumann
algebra A containing e and f.

If e and / are nonzero projections with e Π / = 0, let cos (β, /) =
sup I (a |/9) I, where || a || = 1 = || β ||, a e e, β ef. In case e % f (i.e.
cos(β,/) < 1) we have cos2 (e, /) = 1 — | |p β ,/ | | 2 , where pe,f is the pro-
jection (not necessarily self-adjoint, but bounded) onto e along /. The
idempotents pe,f and pf,e are characterized by the algebraic properties:
(i) ePe,f(e U/) = pe,f, (ϋ) fpf,e(e U/) = £>/,*, and (iii) p β f / + p / t β = e U/.
Conversely, if two bounded idempotent operators exist with these
properties, then e U / is the vector sum of e and /, so that e ^ f.
These results, as well as the next lemma, can be found in Feldman's
thesis [2] (p. 13, Theorem 3 and its Corollary).

LEMMA 10 (Feldman). Asymptoticity and the function cos ( , )
are invariants of *-isomorphisms between von Neumann algebras.

The suggestive terminology in the next proposition will be clarified
in the proof.

PROPOSITION 2. A von Neumann algebra is nonabelian if and
only if it contains arbitrary small angles.

Proof. Suppose first that A is nonabelian and let e,feA be two
orthogonal equivalent projections. Let xe A be a partial isometry
implementing the equivalence: e — x*x and / = xx*. Take aee and
/3e/with/3 = xa, \\a\\ = 1 = \\β\\ and let 0 < λ, μ < 1 with λ2 + μ2 =
1. Define 7 = (i(l + λ))1/2α + μ(2(l + λ))-1 '2^ and

g = i[(l + X)e + μ(x + x*) + (1 - X)f] .

A straightforward calculation shows that g is a projection, γ e ^ ,
II 7 II = 1 and (a \ 7) = (i(l + λ))1/2. Hence by choosing λ close to 1,
we can make cos(β, g) close to 1.

Finally, if A is abelian, then e Π / = 0 forces e l / , so in fact
the only nonzero "angles" are "right angles."

The next lemma provides a simple means of constructing asymptotic

pairs.

LEMMA 11. If a von Neumann algebra contains an infinite
orthogonal sequence of nonabelian projections, then it also contains
a pair of asymptotic projections.
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Proof. Let {pι}T=i be an infinite orthogonal sequence of nonabelian
projections in A. Then each algebra PiApi contains a 2 x 2 matrix
algebra and hence by Proposition 2 we can find two projections
e^fi^Pi with eif]fi = O and a pair of unit vectors at e ei9 βi^fi
for which (a, | &) ̂  1 - (i + I)" 1. Putting e = LUB eζ and / = LUB/ f

we obtain an asymptotic pair of projections in A.

The final link in our argument is provided by

PROPOSITION 3. Let Z be an abelian von Neumann algebra and
let A be the algebra of all n x n matrices (n finite >̂ 2) with entries
from Z. Then A has no asymptotic pairs if and only if Z is finite-
dimensional.

Proof. If Z is finite-dimensional, so is A and hence A is *-
isomorphic to an algebra on a finite-dimensional space. Since an
algebra of the latter type clearly has no asymptotic pairs, we conclude
from Lemma 10 that A has none either.

Conversely, if Z is infinite-dimensional, it contains an infinite
orthogonal sequence {εjΓ-i of nonzero projections. If e* is the matrix
in A having e4 in each diagonal position and zeros elsewhere, then {βJJLi
is an orthogonal sequence of (nonabelian) central projections in A, so
by Lemma 11, A contains an asymptotic pair of projections.

Assembling the above results, we obtain the structure theorem
promised earlier.

THEOREM 2. For a von Neumann algebra A, the following are
equivalent:

(1) A contains no asymptotic pair of projections.
(2) A is the direct-sum of an abelian algebra and a finite-

dimensional algebra.

Proof. First note that if A has no asymptotic pairs, then it
cannot contain an infinite orthogonal sequence of nonabelian projec-
tions by Lemma 11. If A had a non type I portion, the "Halving
Lemma" (see e.g. [9], p. 34, Theorem 17) would yield a sequence of
the type mentioned, so A must be type I, and, in fact, of finite class
by Corollary 1 and Proposition 1.

Next we observe that A has a largest central abelian projection,
so we may split off the abelian summand determined thereby. Assuming
now that A has no abelian summand, the known structure theory for
type I algebras may be applied to decompose A into a direct-sum of
homogeneous algebras. Since each homogeneous summand is nonabelian,
the number of summands is finite by Lemma 11. Finally, each homo-
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geneous summand is an n x n matrix algebra (n finite ^ 2) over its
center, and the latter must be finite-dimensional by Proposition 3.
Therefore (1) implies (2).

The converse implication is contained in Proposition 3 and the
last paragraph of the proof of Proposition 2.

COROLLARY 2. Any von Neumann algebra whose nonabelian
summand contains an infinite-dimensional summand of finite class
has a dual modular pair of asymptotic projections.

The method used in the proof of Theorem 2 yields the converse
of Lemma 11, which can be regarded as the global version of a result
of Dixmier [1] (Proposition 1.1 b., p. 21).

COROLLARY 3. If a von Neumann algebra contains a pair of
asymptotic projections, then it also contains an infinite orthogonal
sequence of nonabelian projections.

Ramsay has asked whether a type III algebra can have noncom-
muting dual modular pairs. It is easy to find such pairs in any
nonabelian algebra. For as in Proposition 2, we can drop down to a
2 x 2 matrix subalgebra and find projections e and / with e Π / = 0
and, e.g., cos (β, /) = | . Then e <Vr f, and by Corollary 1, (e, f)DM. How-
ever e and / cannot commute, for this would imply e _L /, since
β n / = o.

The semimodularity result can also be extended to A W*-algebras,
i?*-algebras (C* -algebras containing the left and right projections of
each operator) and JW-algebras [9]. In a JW-algebra A, one calls
fef range-closed if for any projection g e A, {fef}1 c {g}1 and {efgfe}1 =
{efe}1 imply that {fef}L = {g}1. One then proves the Jordan analog
of Lemma 2. Using Proposition 6 of [9] one obtains a symmetry
se A with s(efe)s = fef and proceeds much as before. We omit the
details.

The author is indebted to the referee for pointing out an over-
sight in Theorem 2 and for an example suggesting Proposition 3.
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