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ON THE CHARACTERIZATION OF COMPACT
HAUSDORFF X FOR WHICH C(X) IS
ALGEBRAICALLY CLOSED

R. S. COUNTRYMAN, JR.

Although the problem considered here has its origins in
Functional Analysis, the viewpoint and methods of this paper
are purely topological. The problem is to give a completely
topological characterization of those compact Hausdorff spaces
X for which the algebra C(X) of all complex-valued continuous
functions on X is algebraically closed, i.e. for which each
polynomial over C(X), whose leading coefficient is constant,
has a root in C(X),

A necessary condition in order that C(X) be algebraically
closed is obtained here and it is proven that, in the presence
of first countability, the condition is also sufficient. The
necessary condition requires that X be hereditarily unicoherent
and that each discrete sequence of continua in X have a
degenerate or empty topological limit inferior. A rather
general sufficient condition is also proved. It states essentially
that each component of X have an algebraically closed function
algebra and that each point of X be of finite order in the
sense of Whyburn,

A short history of the problem is in order. In [1], Decard and
Pearcy consider matrices with entries from the algebra C(X) where X
is a Stonian space (compact, Hausdorff, and extremely disconnected).
As a tool in the investigation, they prove that every monic polynomial
with coefficients in C(X) has a root in C(X). With the aid of this
result, they are able to prove, among other things, that every invert-
able » X n matrix with entries from C(X) has roots of all orders.
In [2] they examine this tool on its own merit., They prove that if
X is either totally disconnected, compact, and Hausdorff, or linearly
ordered and order complete, then C(X) is algebraically closed.

Concerning the problem of giving a topological characterization of
the algebraic property of closure, Decard and Pearcy point out that if
X contains the homeomorphic image of the unit circle, then C(X) is
not algebraically closed. Also, if X is the closure of the graph of
the function ¥y = sin(1/z) 0 < <1, then C(X) is not algebraically
closed. The following obvious lemma indicates that there is a reason-
able chance of finding a solution to the problem.

LemmA 1.1, If X is compact and Hausdorff and tf M is a
closed subset of X such that C(M) is not algebraically closed, then
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C(X) is not algebratcally closed either.

Thus each time one finds a space X such that C(X) is not
algebraically closed, one knows a configuration which cannot be a
part of any space which has a closed function algebra. It turns out
that the two configurations mentioned above come very close to giving
a complete answer to the problem. Another lemma which sheds a
great deal of light on the problem comes from [1].

LemmaA 1.2, If x,e X and z, 18 a root of P(x,z) of multiplicity
m, and tf € >0 is such that P(x, z) has no root in 0 < |z — 2z,| = ¢,
then there is an open set V containing x, such that if x € V then P(x,z)
has exactly m roots (counting multiplicities) in |z — 2,| < &.

It is easily seen that this lemma establishes a strong connection
between the behavior of the roots of P(x, 2) and the topology on X.

2. The necessary condition. We begin by extracting the es-
sential features of the two configurations mentioned in the introduction.
A space which contains the homeomorphic image of the unit circle is
not hereditarily unicoherent i.e. contains two connected closed subsets
whose intersection is not connected.

LEMMA 2.1, Let X be a compact Hausdorff space and let M and
N be connected closed subsets of X such that MUN = X and MNN
is not connected, Then C(X) is not algebraically closed.

Proof. Let MNN = AU B where A and B are disjoint, nonempty,
closed sets. Let f(x) be a continuous mapping of X into the closed unit
interval [0.1] of real numbers such that f(x) =0 on A and f(x) =1 on
B, If xe M — N, let h(z) = exp (izf(x)) and let A(x) = exp (—imf(x))
otherwise. It is a simple matter to verify that h(x) e C(X). Consider
the monic polynomial P(z,z) = 2* — h(x). Suppose there were an
element 7(x) in C(X) such that P(x, r(x)) = 0. Since M is connected
and »(z) is continuous, it must be that »(M) = {exp (18): 0 = B = 7/2} or
r(M) = {exp (i18):7 =< 8 = 3x/2}. We may clearly assume that the first
statement holds. Now the same considerations hold for »(INV); either
r(N)={exp(iB):m/2=B =7} or »(N)={exp(i8):3n/2= B8 =<2r}. In
the first case we get that »(M NA) =1 while »(NNA4) = —1, and in
the second case we find »(M NB) =14 while #(NNB)= —i. Since
M NN = AU B however, we see that MNA=NNA=Aand MNB =
NNB =B and we have a contradiction in either case! Thus C(X) is
not algebraically closed.
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Thus the first part of our necessary condition will require that X
be hereditarily unicoherent. In order to specify the essential features
of the closure of the graph of the function y =sin(l/x) 0 = ¢ =1,
we need the following.

DEFINITION 2.2. A topological space is almost locally-connected in
case it does not contain sequences {C,}(n =1,2,...), {&,}(n=1,2,-..),
and {y,}(n =1, 2, --.) such that; for each n, C, is a connected closed
set which is open in UC,(k=1,2, --.),C,NC, =@ for m =, 2,
and y, are points of C, for each », and {x,} (w=1,2, ---) and {y,}
(m=1,2, ---) converge to distinct points x, and ¥, respectively.

The term “almost locally-connected” is motivated by the fact (to
be proved later) that a compact and sequentially compact connected
Hausdorff space is locally connected if it is almost locally-connected.
This generalizes the well-known result (cf. for example, [3], Theorem
3-12, p. 114) that a compact connected metric space is locally con-
nected if it contains no continuum of convergence (for the meaning
of “continuum of convergence” see [5], p. 18).

LEMMA 2.3, If X is a compact Hausdorff space which is not
almost locally-connected, then C(X) is not algebraically closed.

Proof. Let {C}n=1,2--.), {x,}n=1,2--.) {g,}n=1,2, -..),
x,, and ¥, be as in (2.2). Since UJC,(k = 1,2, ---) is obviously closed
in X, we may (in view of (1.1)) assume without loss of generality
that X = UJC,(k =1,2,--.). Let A and B be disjoint closed nbhds
of x, and y, respectively. Let f(x) be a continuous mapping of X
into the closed unit interval [—1,1] such that f(x) =1 on A and

f(x) = —1 on B. Define the function 2(x) on X and follows., If xeC,
and 7 is even, let

M) = f@) + @/l — (@) T",

if xeC, and = is odd, let
h(@) = flx) — (¢/m)[1 — (Az)]"*,

and otherwise let A(x) = f(x). Since the C, are disjoint, h(z) is well
defined, and since the C, are open, we see that h(x)e C(X). Now
consider the monic polynomial P(x,z) = 2 — h(x). Suppose there were
a function »(x) e C(X) such that P(x, »(x)) = 0. For almost all «, C,
is a continuum from A to B with «,¢ 4 and y, e B. Thus the image
»(C,) must be a connected set from »(x,) to »(y,) which is contained
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in some closed quadrant of the complex plane. We may assume, since
h(x,) = 1, that »(x,) = 1. Since z,—x, and r(x,) = %1 for almost
all n, we must have that r(x,) = +1 for almost all n. This then
requires that for almost all even =, r(y,) = +4%, and for almost all
odd », r(y,) = —¢. But y,— ¥, so that »(y,) — r(¥,), and we have a
contradiction. Thus C(X) is not algebraically closed and the lemma
is established.
We have thus established the following necessary condition.

THEOREM 2.4. If X s a compact Hausdorff space, a necessary
condition that C(X) be algebraically closed is that X be hereditarily
unicoherent and almost locally-connected.

One naturally wants to know whether, or to what extent, the
necessary condition is also sufficient. It seems appropriate to give a
partial answer to the question at this point. A more complete answer
must wait until a later section of this paper. The partial answer
we give here is that if X is connected and sequentially compact in
addition to being compact and Hausdorff, then the necessary condition
is also sufficient. The following lemma will be needed to prove this
fact.

LemMmA 2,56, Let X be a compact connected Hausdorfl space
which ts sequentially compact, hereditarily unicoherent, and almost
locally-connected, and let p and q be distinct points of X. There is
continuum, Elp, ql, in X which 1is irreducible from p to q. FEach
point of E(p, q)(E(p, q) = E[p, q] — (p + q)) separates p and q in X
and the order topology induced on El[p, q] by the separation order is
the same as the subspace topology on Elp, q].

Proof. The proof rests on showing that X is locally connected.
Suppose X were not locally connected and find, therefore, a point x}
and an open set V' containing «} such that «) is not an interior point
of the component of V' which contains it. Find open sets V, and V,
such that 2je V,= V,= V,= V,= V. Since X is compact, connected,
and Hausdorff, every component of V, which intersects V, must contain
points of Bd(V,). Also, if H is a component of V, and N is any
closed set contained in V, and disjoint from H, then there is an open
set A such that ANN= @, HS A, and ANV, is closed.

Let H, be the component of V, which contains ). Since ) is
not an interior point of H,, V, is not contained in H,. Let H, be a
component of V, such that H, = H, and H, NV, % @, and let A, be
an open set such that H,N A, = @, H, < A,, and A, NV, is closed.

Now suppose we have sequences H, H,,---,H, and A, A,,---, A,
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such that for each 4; H, is a component of V, H,NV,# @, A, is
open, AiNH, =2, i2UH,(G=1,---,1), H.NA =0, 4, 2 4,
and 4; NV, is closed. Since A4, NV, is closed and 4, N H, = @, we
see that V,— A, is an open set containing ) hence, there is a
component H,,, of V, such that H,,, = H, and H, , N (V,— 4,) # D.
Since A, is both open and closed in V, and H,., contains points not
in A,, it follows that H,.,N A, = @. We can find an open set B
such that BN H,= @, B2 H,,,, and BNV, is closed. Put 4,,, =
A, U B. It is eagsy to see that the pair of sequences H,, H,,---, H,,,
and A4, A,, -+, A,,, retain all the original properties. The axiom of
induction thus guarantees the existence of countably infinite sequences
H,6H, .--- and A, A,, --- with the same properties.

Since X is sequentially compact, we can find a point x,e V, and
a subsequence H,.,, H,., -+- such that x, is a sequential limit point
of a sequence a,,a,, --- where a,€ H,;. Each H,, must intersect
Bd (V) and hence, again by sequential compactness, we can find a
subsequence s(1), s(2), --- of the integers and a point y,e Bd(V)) such
that y, is a sequential limit point of a sequence ¥y, ¥, -+ where
¥i € Hyyun. Since V, &V, @, # 9. Put C; = H,,u), and «; = a,;, and
we have a violation of the definition of almost locally-connected (C;
will be open in the closure of UCi(i =1,2, --.) since H,,,) S
(Auisiiy — Auein-) NV, which is an open set in V, that does not
intersect C; for j # 7). Therefore, X is locally connected.

Since X is itself a continuum from p to ¢, there is surely a sub-
continuum which is irreducible from p to ¢, call it E[p, q]. E[p, q]
is unique, for two distinct, irreducible continua from p to ¢ could not
have a connected intersection (X must be hereditarily unicoherent).
Let y be a point of E(p,q). We must show that X —y=AUB
where A and B are disjoint open sets containing p and q respectively.
This will be true if y is an element of every closed connected set
which contains both p» and ¢ (see [3], Theorem 3-6). But, again
because of hereditary unicoherence, this last statement is immediate,
Now, since E[p, q] is a compact, connected, Hausdorff space with just
two noncut points, we see that the order topology induced by the
separation order on E[p, q] is the same as the subspace topology (see
[3], Theorem 2-25).

We can now prove the following:

THEOREM 2.6. Let X be a compact Hausdorff space which is
also sequentially compact and connected. In order that C(X) be
algebraically closed, it is necessary and sufficient that X be heredi-
tarily unicohereni and almost locally-connected.

Proof. The necessity has already been shown. To prove suf-
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ficiency, let P(x,2) be a monic polynomial over C(X). Let % =
{(D, f): D is connected subset of X, fe C(D), and P(z, f(z)) = 0 on D}.
If (D, f) and (D', f') are elements of 2, define (D, [f) < (D, f') if
and only if D < D’ and f'(z) = f(x) on D. It is evident that 2 is
not empty.

Suppose {(D., fa)leer is a linearly ordered subset of 2. Let D =
UD(xel) and let f= U fulael). Since {(D., fu)leer is linearly
ordered, it is clear that f is a well-defined function on D. Surely D
is connected and P(zx, f(x)) = 0 on D. If we can show that fe C(D),
we will have found an upper bound in 2" for {(D., f.)}«e: and thus,
by Zorn’s Lemma, we will know that 2  has maximal elements.

Suppose there is a point z, of D at which f is not continuous.
Then there is a ¢ > 0 such that for no nbhd V of x, is it true that
f(VYc {z: |z — fla))| <e). Let z = f(x,), 7, -+, 2, be the distinct
roots of P(x,, 2) and let ¢, = (1/2) min {|z; — #;|: ¢ # j}. Let ¢ be the
smaller of ¢, and ¢,, There is a nbhd V(«,) of =, such that if xe V(z,)
and P(x,2) = 0, then |z — 2;| < ¢ for some 4 (apply (1.2) to each z;
and take the intersection of the resulting nbhds). Since X is locally
connected (see the proof of (2.5)) we can take V(x,) to be connected.
Now f(Vi(x,) & {2: |2 — 2,] < €], hence there is a point y, such that
yo€ V() and |f(y,) — 2| =¢. Find aecl so that both x, and y, are
in D,, and notice that it will then follow that E[x,, ,] & D, (remember,
each point of E(x, y,) separates E|[x, ¥,] in X). Now we see the
contradiction, for f(E[x,, ¥.]) = fo(E[%, ¥s]), and being a continuous
function on D,, f, carries connected sets onto connected sets; however,
JEz,y) S U 2 —2| <el(z=1,2,---, k) and these are disjoint
open sets. Thus f must be continuous on D and £  has maximal
elements.

Let (D*, f*) be a maximal element of 2. If D* = X, we are
done, so assume y,e X — D* and let z,e D*. Note that, in general,
if re Elp, q] then E[p, r]U Elr, q] = E[p, ql. Thus E[x, y] N D* =
U El=,, ¥y € E[x,, yo]ND*) and therefore, E[x,, y,] N D* is connected.
It is thus clear that there is a point m of E[x,, y,] such that
Elx, m] — m <& D* and E[m,y,] — m S X — D*., We need to show
that me D*, If m¢ D*, then there can be no way of extending f*
continuously to D* + m((D*, f*) is maximal). This means that there
is a ¢, > 0 such that, if V is any nbhd of m, there are points = and
y in VN D* such that |f(x) — f(y)| = ¢e. Let 2,2, ---,2, be the
distinct roots of P(m,z) and let & = (1/2) min{|z; — 2,]: ¢ # j} and
finally let ¢ be the smaller of ¢, and ¢,. There is a connected nbhd
V(m) of m such that for e V(m), each root of P(x,z) is within ¢
of some z;,. Since V(m) is connected, E[x,y] S V(m) whenever x and
y are in V(m). Also, F[z,y] & D* whenever x and y are in D*,
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Therefore, V(m) N D* is connected (it contains a continuum between
each pair of its points).

But f* is continuous and hence f*(V(m) N D*) is connected. On
the other hand, f*(V(m) N D*) cannot be connected since it is contained
in Ufz:lz —2 | <el(t=1,2, ---, k), a union of disjoint open sets,
and meets at least two of these sets. Thus f* would be extendable
to D* 4+ m, and since this cannot be, we know that me D*,

Since E|[m, y,] is a linearly ordered, order-complete space, we can
find continuous functions f, fs, ---, f., on E[m, y,] (see [2], the proof
of Theorem 3) such that P(x,z2) = (z — fi(2))(z — fox)) - -+ (2 — f.(2))
on E[m,y,. Put D' =D*UE[m,y,| and put ' = f* U f, where s is
such that f*(m) = f,(m). Since D* — m and E(m,y,] are open in D’,
it is easy to see that f'eC(D’). Thus (D*, f*) < (D', f'), but since
(D*, f*) is maximal, we have a contradiction. Hence D* = X and
f* is a continuous root for P(z, ) and C(X) is algebraically closed.

3. A general sufficient condition. The sufficient condition
which is developed in this section was obtained by generalizing the
methods used by Deckard and Pearcy to prove that C(X) is algebrai-
cally closed if X is compact, Hausdorff, and totally disconnected (see
[2]). Since the components of such a space are single points, it is
obvious that one can find continuous root functions on each component.
As a start in formulating our sufficient condition, we require that the
space satisfy the following definition.

DEFINITION 3.1. A compact Hausdorff space X is a C-space if,
given a component M of X, a point 2z, of M, a monic polynomial
P(z,2) over C(X), and a root z, of P(x, 2); one can always find a
function »(z) in C(M) such that »(x,) = 2, and P(x, »(x)) = 0 on M.

The method of Deckard and Pearcy is to prove, by an inductive
method, that local continuous solutions can be found, then to patch
together the local solutions (using the fact that there is a basis for
the topology consisting of open and closed sets). The analogous pro-
cedure here would be to show that continuous solutions can be found
in a nbhd of each component of X, and then patch. The proof of
this itself requires the patching of still smaller local solutions (as is
the case with Deckard and Pearcy), and in order to carry out this
plan, it seems necessary to assume that there is a base for the
topology on X consisting of open sets with finite boundaries, i.e.
every point is of finite order (see [5], p. 48). The form in which we
use this assumption is contained in the following definition.

DErINITION 3.2. If X is a space and V is a subset of X, V is an
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A-set in case V is open and Bd (V) is finite or empty and is contained
in a single component of V. If Bd(V) is not empty, then the
component of ¥V which contains Bd (V) is the A-component of V. If
xeV, then V is an A-nbid of x in case Bd (V) is empty, or else x
is a point of the A-component of V. Finally, if there is a base for
the topology at each point 2 of X consisting of A-nbhds of x, then
X is an A-space.

Let us see that a compact Hausdorff space, in which each point
is of finite order, is an A-space. Suppose that V' is an open set and
p is a point of V. Let V, be an open set with finite boundary such
that pe V, = V. Let Q be the component of V, which contains p,
and let R Dbe the set consisting of all the boundary points of V,
which are not in Q. Since V, is compact and Hausdorff, there are
disjoint closed sets E and G, containing @ and R respectively, such
that EUG =V, LetV,=ENV, It is a routine computation to
show that V, is an A-nbhd of p and thus see that the space is an
A-space.

Note that the property that each point be of finite order is
clearly hereditary so that each closed subset of a compact Hausdorff
A-space is itself an A-space.

The following lemma will be invaluable when the time comes to
patch together several local solutions.

LEMMA 3.3. Let X be a compact Hausdorff space and let V,,
Vs o+, V., be a finite sequence of A-sets. There is another sequence
Vi, V), «+, V. of A-sets such that UV ¢t =1,2,---,m)=UV; (2 =
1,2,.--,n) and if V] #V,, then V! SV, and V] is closed. Further,
if 1 <gjand ViNBAd(V])+ @, then V] is an A-nbhd of each point
of ViNBAd(V]). We will call a sequence of A-sets satisfying this
last condition an A-sequence.

Proof. We use induction. If n =1, put V) =V, and there is
nothing to prove. Assume the lemma true if » < m and consider a
sequence V., V,, ---,V, of A-sets. We can find an A-sequence V7,
Vi, ., V! such that UV! (G =28, ---,m)=UV; (=28, -+, m),
and if V! £V, then V/!<=V, and V] is closed. If the sequence
vV, V),V -+, V5 is an A-sequence, put V{ =V, and we are done.
If it is not an A-sequence, then there is an integer s and a point z,
of V! such that x, is a point of V!N Bd(V,) and yet V! is not an
A-nbhd of =, It then follows that the component H, of V! which
contains x, is contained in V!. Since x is compact and Hausdorff, it
must be that H, is actually a component of X. Hence there is an
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open and closed set V such that H, & V < V,. Further, since H, is
a component of X, H, contains the A-component of V, and hence
contains Bd (V,). Thus, putting V{ = V, — V, we obtain an open and
closed set. Now V{, V), ..., V) is an A-sequence, and the lemma
follows by induction,

We are now ready to prove the general sufficient condition.

THEOREM 3.4, Let X be a compact Hausdorff space. If X 1is
an AC-space then C(X) is algebraically closed.

Proof. The proof rests on establishing the following.

Local result 3.5. If x,€ X, M is the component of X containing
%o, P(x,2) is a monic polynomial over C(X), r(x)e C(M) such that
P(x, r(x)) = 0 on M; then there is a nbhd N(x,) of z, and a function
r*(x) e C(N(x,)) such that P(x, r*(x)) = 0 on N(z,) and r*(x) = r(x) if
xe M N N(x,).

We prove this by induction on the multiplicity of the root »(x,)
of the polynomial P(x,, 2). If »(x,) is a simple root, we can find, by
(1.2), a nbhd N’'(x,) of x, such that for x e N'(«,), P(x, z) has just one
root satisfying |z — r(x,) | < &, where ¢ is half the minimum distance
between distinct roots of P(x,, 2). Let N”(x,) be a nbhd of x, such
that for xe M N N"(x,), |r(x) — r(x,)| < € (remember, r(x) is continuous
on M), Let N(x,) = N'(x,) N N"(x,).

If e N(x,), define r*(x) to the root (there is only one) of P(x, z)
which satisfies [z — r(x,)| <e. We must show that r*(x)e C(N(x,)).
Let y, be any point of N(w,), and let W be an open set of complex
numbers such that »*(y,) € W. Let &' be so small that if |z — »*(y,) | =
¢, then |z — r(x,)| <e and ze W. Since P(y,#2) has only one root
satisfying |z — 7(x,)| < e, it is clear that there is no root satisfying
0 < |z—1r*(y,)| = €; therefore, by (1.2), there is a nbhd N(y,) of y, such
that for x € N(y,), P(x,2) has exactly one root satisfying |z — r*(y,)| <¢'.
Now if e N(x,) N N(y,), we see that [r*(x) — r*(¥,) | < € (otherwise
P(x,z) would have two roots satisfying |z — »(x,)| < ¢, r*(x) and the
one satisfying |z — r*(y,)| < ¢’). Thus N(«,) N N(y,) is contained in
the inverse image of W, and it follows that the latter is open in
N(xz,) so that »*(x) e C(N(x,)).

Clearly P(z, r*(x)) =0 on N(x,). To see that xe N(x)NM
implies that #*(x) = r(x), recall that xze N(x,) N M implies that
[ r(x) — r(x,)| <e. Thus »(x) = r*(x) would give two roots of P(z, 2)
satisfying [z — 7(x,) | < e.

Now assume that the local result holds whenever the multiplicity
is less than k=2, Let z, be a point of M such that the multiplicity
of r(x,) is k. Again, let ¢ be half the minimum distance between
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distinet roots of P(x,, z). Let N'(x,) be a nbhd of x, such that for
x € N'(x,), P(x,,2) has exactly k roots satisfying |z — r(x,)| < ¢, and the
remaining roots are each within ¢ of some root of P(z,, %) (apply (1.2)
to each distinct root of P(x,, 2) and take the intersection of the resulting
nbhds). Let N'(xz,) be a nbhd of x, such that for xze N"(x,) N M,
| r(z) — r(x,)] <e. Let N(x,) be an A-nbhd of xz, whose closure, say
Y, is contained in N'(z,) N N"(x,).

We divide Y into two parts. Let B be the subset of Y consisting
of all points 2 such that P(x, z) has at least two distinct roots satis-
fying |2 — r(x,)| < e. A simple application of (1.2) shows that B is
open in Y, If n is a positive integer, let B, be the subset of Y
consisting of all points x such that P(x,z) has distinct roots which
satisfy |2 — r(2,) | < € and are at least 1/n apart. Another application
of (1.2) shows that each B, is closed in Y and hence is compact,
Obviously B=UUB, (n=1,2,--.). We will obtain r*(z) by first
defining it on B, and then extending it to all of Y.

Let {H,} (e I) be the collection of components of Y. If ael is
such that H, & M, let F,(x) be the function defined on H, such that
for xe H,, F(x) = r(x). If ael is such that H,N M = @ (this is
the only other possibility), let x(«) be a point of H, and let z(a) be a
root of P(x(«), 2) such that |z(a) — r(x,) | < e. Since X is a C-space,
there is a continuous function 7,(x), defined on the component of X
which contains H,, such that »,(z(a)) = 2(a) and P(z, r.(x)) = 0 for
all relevant x. Let F,(x) be the restriction of r.(x) to H, It is
clear that for ae I, F (x)e C(H,) and P(x, F,(x)) =0 on H,. Now,
because Y = N’ (x,), we can see that if awel is such that H, & M,
then | F(x) — r(%,)| < ¢ whenever x ¢ H,. Further, the same statement
holds even if H,NM = @, for, since Y S N'(x,), if x € H, then there
is no root of P(x,2) which satisfies |z — r(«,)| = e. Thus, since
|2(a) — r(x,)| < e and H, is connected, it must follow that F,(x)
satisfies |z — 7(x,) | < € whenever xe H,. We see, therefore, that if
acI and xe H,N B, then the multiplicity of the root F,.(x) of P(z,z)
is less that %k, and hence the local result holds at each point of B
subject only to the restriction that the 'r(x) be a F,(x).

We now restrict our attention to the closed subspace Y of X, and
all topological terms will be relative to Y. As we have seen, Y is an
A-space, and the local result, (3.5), holds at each point of B with the
restriction that the 'r(z)’ be a F,(®). Thus, if xe B, there is a nbhd
V(x) of x and a function g,(y) € C(V(x)) such that P(y, g.(y)) =0 on
V(z) and g,(y) = F.(») if yeH,NV(x), where ael is such that
xeH, Since |F,(x) — r(x)| <e& and g,y) is continuous, we can
assume that |g,(y) — r(x,) | < € on V(). We can further assume that
V(x) is an A-nbhd of z, and that g,(y) is actually defined and has all
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the above properties even on the closure of V(x). Since B, is compact,
there is a finite number of such sets which cover B..

To summarize all of this, there is a sequence V,V,, -+, V, of
A-sets and a sequence g, g,, ---, g, of functions such that

BcUV: (=12 - ncUV:(=12--,1)CB,
9:€C(V)) and |gyx) — r(x)| <eon V, i =12 +++, 10,
Px,9;x)) =0on V, 2 =1,2, -+, m,

if H is the A-component of V; and H < H, then for v ¢ H ,
gi(x) =F(x) 1t =1,2, -+, m.

In view of (3.3), it is apparent that we can take the V, to be an
A-sequence,

Now since the V, are A-sets, the boundary of their union is finite
(being contained in the union of the boundaries). Let V,. ., V,is+++, V.
be a sequence of A-sets with disjoint closures so that V, = Bfor n +1=
j = m and each boundary point of UV, (t =1,2,.-.,7n) is contained in
exactly one V; with n 4+ 1 < j < m and that V; is an A-nbhd of that
point, It should be evident that these nbhds can be chosen in such
a way that there are continuous functions g¢,.., guis *+*, 9. On the
corresponding V, such that for n + 1 =<7 =< m;|g;(x) — r(x,)| <& on
V,, P(®, 9,2)) =0 on V,;, and if H is the A-component of V,; and
HZ H,, then g,z) = F,(x) on H. Because of the way in which
Vuis, +++, V,, were chosen, V,, V,, -.- V, is an A-sequence,.

Now B, — UV:(:=1,2, ..., m) is compact and is disjoint from
UV. (¢ =1,2,---,n), therefore, we can find a sequence V,.1, Vi, +, V,
of A-sets such that B,— UV, (1 =1,2, ..+, m) is contained in UV,
Gt=m+1,m+2 ---,t), and for m +1=j=t V,= B and does
not intersect YV, (1 = 1,2, ---, ). Again, it should be clear that
Viits Vinss, +++, V., can be chosen so that there is a sequence ¢,,.i,
Omisy *++, g, of continuous functions on the corresponding V; such that
for m +1=<j=t Pz, g,x) =0, |9;® — r®)]| <e and if H is the
A-component of V; and H < H,, then g,(x) = F,(x) on H. In view of
(3.3), we may also assume that V,,,, V,.,, -+, V, is an A-sequence.

It is a rather tedious but straightforward task to verify the
following facts.

V, V., +++, V, is a A-sequence,

g:eC(V)1=sist,

for xe V;, P(z, g(x)) = 0 and |g,(x) — r(2,) | <e 1 =i =¢,
BeUV:t=L1,2---,0) & LJVz t=12 .--,t) & B, and

if H is the A-component of V; and H & H,, then g,(z) = F, ()
on H1<1<¢,



444 R. S. COUNTRYMAN, JR.

It should now be clear how to continue the process indefinitely
and so to obtain countably infinite sequences V,, V,, --- and g,, ¢,, - - -
such that

Vi, Vs -+, V; is an A-sequence 7 =1,2, ... |
g;€C(V)i=1,2, -+,

for xe V,, P(x, gi(x)) = 0 and |g;(x) — »(x)| <ei=1,2 +--,
B=UV: (=12 -)=UV: (i=12,---), and

if H is the A-component of V; and H < H,, then g,(z) = F,(x)
on H1=1,2, ...,

If xe B, define r*(x) = g,.(x), where » is the smallest integer such
that ze V,. If xeY— B, let r*(x) be the root of P(x,2) which
satisfies |z — r(x,)| < e. It is obvious that P(z, r*(z)) = 0 on Y.

Let us see that r*(x) =r(x) on MNY. If xe(MnNY)— B, then
r*(x) is the root of P(x,z) which satisfies |z — r(x,)| < e. This is true
of r(x), hence r(x) =r*(x). If xeMnNYnNB, let V, be the first V;
which contains x. Since M N Y is compact, connected, and Hausdorff
(remember, Y is the closure in X of an A-nbhd of z,) and M NV, is a
proper (V, & B) open subset of M N Y, the closure of each component
of M NV, must meet the boundary of V,. Thus « is in the A-component
of V,, hence r*(x) = g,(x) = F.(x) = r(x), since H, & M implies that
F . (x) is the restriction of r(x) to H,.

It remains to be shown that »*(x) is continuous on Y, If ye Y — B,
using the fact that |»*(z) — r(z,)| <& on Y, one can apply (1.2) to
show r*(x) is continuous at y. If ye B, let V, be the first V; which
contains y. To show that r*(x) is continuous at y, it suffices to show
that for j < n, if y ¢ V, then ¢;(y) = ¢.(y). Indeed, since V,,V,,---, V,
is an A-sequence, if j < mn and ye V,, then y is in the A-component
of V, (since yeBd(V,)) and y is in the A-component of V, (since V,
must be an A-nbhd of y); therefore, g,(y) = F.(y) = 9.(y), where ae I
is such that H, is the component of Y which contains y. Recalling
that Y is the closure of a nbhd of x, we see that (3.5) holds if the
multiplicity of »(x,) is %k, and thus, by induction, (3.5) holds in general.

It should now be quite evident how one obtains (3.4) from (3.5).

4. We now return our attention to the question concerning the
sufficiency of the necessary condition of §2. The answer we obtain
is that if the compact Hausdorff space in question is first-countable,
then the necessary condition is sufficient. This fact was discovered
in a very natural way, namely, by asking under what conditions does
the necessary condition of §2 imply the sufficient condition of §3. If
X is sequentially compact, (2.6) applies to the components of X. A
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close look at the proof of (2.6) shows that the following theorem was
actually proved.

THEOREM 2.6’. Let X be a compact Hausdorff space which is
also sequentially compact and connected. In order that X be a C-space,
it 1s necessary and sufficient that X be hereditarily unicoherent and
almost locally-connected.

Thus, with the added condition of sequential compactness, the
necessary condition implies the second half of the sufficient condition,

In order to show that the necessary condition implies that the
space is an A-space, it seems necessary to assume that the space is
first-countable (an assumption which also implies, for compact spaces,
sequential compactness).

THEOREM 4.1. Let X be a compact Hausdorff space which 1s
hereditarily unicoherent, almost locally-connected, and first-countable.
Then X 1is an A-space.

Proof. As we have seen, it will suffice to show that every point
of X is of finite order. Accordingly, let x, be a point of X and let
V be an open set containing x,, We must show that there is an open
set with finite boundary which contains x, and is contained in V. To
that end we shall need the following fact whose proof will be delayed
until the end of this section.

LEMMA 4.2. Let X be a compact Hausdorff space which is heredi-
tarily unicoherent, almost locally-conmected, and first-countable. If
a and b are distinct points of a component of X and V is an open set
contaiming a, then there are a point ¢ of V and disjoint open sets A
and B containing a and b respectively such that X — ¢ = AU B.

For each point  of X — V; either ¢ is not in the same component
of X as w, in which case there are disjoint open sets A(x) and B(z)
containing x, and « respectively such that A(x) U B(x) = X, or, by
(4.2), there are a point ¢(x) of V and disjoint open sets A(») and B(x)
containing w, and x respectively such that A(x) U B(z) = X — ¢(z).
Since X — V is compact, there are finitely many points «,, @,, ---, @,
of X — V such that the corresponding B(x;) cover X — V. Putting
V' =NA,)(#=1,2,---,n), we obtain an open set with finite boundary
which contains 2, and is contained in V. Thus =z, is of finite order
and X is an A-space.

We now have as a corollary to (2.6') and (4.1) the answer we are
seeking.



446 R. S. COUNTRYMAN, JR.

COROLLARY 4.3, Let X be a first-countable compact Hausdorff
space. A mecessary and sufficient condition that C(X) be algebrai-
cally closed is that X be hereditarily unicoherent and almost locally-
connected,

Proof of 4.2. Choose a point ¢ of Elfa,b] NV distinct from a
(remember, (2.5) applies to the components of X). There are separated
sets A’ and B’ containing « and b respectively such that (A’UB’) +¢=H
is the component of X which contains a. Let V,V,,--- be a countable
base of open sets for the topology at ¢ such that V; 2V,.,. Let {H,}se:
be the collection of components of X which are distinet from H, If
ael is such that for some 7, H. =V, but H, £ V,.,, let F, be an
open and closed set such that V;2 F,2 H,. If acl is such that
H,<Z V, fails for all ¢, let F, be an open and closed set such that
H, S F,and F,NH=Q.

Now A’ —V, and B’ — V, are separated in X — V,, and hence,
since X — V, is compact, X — V, = A, U B, where 4, 2 A’ — V, and
B, 2 B — V,and A, and B, are disjoint closed sets. Since X is sequen-
tially compact, there are at most a finite number of « in I such that H,
intersects both A, and B, (recall the proof of (2.5)). Let «a,, a,, +--, &,
be all such a. Let

A=A UVA)-UF, =12, ---,n())
and
B =B, UB)UUF,, (t=1,2,---,n()).

We note that H,, (¢ =1,2,---,n(1)) must intersect V,, A] and B; are
separated in X, A]2 A’, Bj2 B, and AJ]UB/ 2 X — V..

There is a positive integer k, such that (4]U B]) N V,, is contained
in A’ U B’. There are disjoint closed sets 4, and B, such that 4, 2
Al -V, and B2 B -V, and 4, U B, 2 X — V,,. Again, there are
at most a finite number of a e I such that H, intersects both A4, and
B,. Let a,u)i1, ®uiyss, **, Ay be the set of such a. Let

A=A UA)-UF, =12, .-+, 1(2))
and
B;:(B2U‘B')UUF% ('1::1,2,"',7?/(2)).

Note that H,, (¢t = n(1) + 1, n(1) + 2, -+, n(2)) must intersect V,,, 4]
and B; are separated in X, A} 2 A, B2 B, and AiJUB, 2 X — V,_.
We will also need that A;2 A1 - U F., (¢ =1,2,--+,n(2)) and B; 2 Bi.
To see this, observe that 4, 2 A — V,, and thus

AUAZ2A -V, )UA = A - (AINTV)NA 2 (Al - A)UA = A},
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so that 4; = (4, UA) - UF,, 24— UF,,. Similarly, B,UB' 2 B,
so that Bj =2 Bj.

There is a positive integer k, such that (A,UB)NV.S A'UB'.
There are disjoint closed sets A, and B; such that 4,2 A4; - V,,
B,2B;—-V,, and A, UB;= X —V,,. There are at most a finite
number of « in I such that H, meets both A, and B,; denote these

(24 by an(2)+1y M} an(3)° Let
A;: (ASUA,) - UFa,i (’L = 1’ 27 '°',’n(3))

and
Bg:(BSU-BI)UUFaz (7/:1727 "',’)7/(3)).

One can see, as before, that H, (i =n(2)+1,---,n(3)) must intersect
Vi, Ai and B; are separated in X, A;2 A', B;2 B, AiUB; 2 X -V,
A2A4-UF., =12 ---,0(3)), and B; 2 B;.

Continuing this construction countably often, one obtains five
sequences, {A%}, {B}}, {«a;}, {n(2)}, and {k;}, with the following properties.

(1) A, and B, are separated sets
(2) Au24,-UF, (=1,2,---,n(m))
(3) :n+lgB;n2UFai(i:1’2y“'yn(m))
(4) ALUB,2X-V,  wherek, =1
(56) A,2 A" and B, 2 B’

and
(6) H,, intersects V;, n@)+1l=m=n(+1).

5

-
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I
o
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Now let B=U®B};(1=1,2,---) and A= X — (B+¢). We must
show that A and B are open. Let xe B, then surely x = ¢ so that
there is a nbhd V(z) of x and an integer 7 such that V(x)NV,,_ =2.
Since A} and B; are separated, (1), there is a nbhd V’(x) of « such
that V'(x) N A; = @ (xe B} since (4) = x e A}U B}). Thus V(z) N V'(x)
is contained in B} and hence in B so that B is open. Let x¢ A, then
2 # ¢ and x ¢ B and there exist a nbhd V(z) of = and an integer ¢ such
that V()N V,,_, = ©@. Since x¢ B,x¢ B;, and since V(x) S A; U B;
(from (4) since V(z) N V,,_, = @), it follows that x e Aj. There is a
nbhd V’(x) of x such that V'(x)N B} = @ (A} and B} are separated),
thus V(z) N V(x) & Ai. There are only finitely many «; such that
F, &V, _, (see (6) and remember that V.., & Vi); subtracting these
F., from V(z) N V'(x), we obtain a nbhd of = (by (3), no F,, contains
x since x ¢ B) contained in A’ for j = 4 (here (2) is crucial) and hence
which misses every B, and is therefore contained in 4. Thus A is
also open. Clearly A 2 A’, B2 B, and AUB= X —¢, and (4.1) is
established.
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5. Remarks. (1) Of fundamental importance throughout this
paper was the local connectivity of the components of X (all A-spaces
have this property). The fact that SR (the Stone-Cech compactification
of the reals) is not locally connected, but that nevertheless C(BR) =
C*(R) is algebraically closed, indicates the limitations of the methods
used here.

(2) It should be pointed out that the necessary condition was
proved by assuming only that square roots could be taken. This
leads to the conjecture: if X is compact and Hausdorff and if each
element in C(X) has a square root in C(X), then C(X) is algebraically
closed. In this connection, note that the existence of all 2"th roots
for a given function need not imply the existence of all integral roots.
If we identify in SR all limit points of the sequence (—2), (—2)?%
(—2)p3, ..., and call the resulting space aR, we can prove that the
function exp (iwx), defined for all real xz, has a continuous extension
to all of «R, that this extension has continuous 2"th roots for all =,
but that no continuous fifth root exists.

(3) It has been shown that all compact and sequentially compact
connected Hausdorff spaces which satisfy the necessary condition are
trees (in the sense of L. E, Ward, Jr. [4]). One of the theorems in
[4] states that trees are hereditarily unicoherent locally connected
continua, thus we can say that in the presence of sequential com-
pactness, a necessary and sufficient condition that C(X) be algebraically
closed is that X be a tree. This leads us to another conjecture: in
the presence of first-countability, a necessary and sufficient condition
that C(X) be algebraically closed is that X be a closed subset of
some first-countable tree.
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