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A NOTE ON DAVID HARRISON’S THEORY
OF PREPRIMES

D. W. DuBois

A Stone ring is a partially ordered ring K with unit
element 1 satisfying (1) 1 is positive; (2) for every z in K
there exists a natural number 7 such that n-1 — x belongs to
K; and (3) if 1 + na is positive for all natural numbers »
then z is positive. Our first theorem: Every Stone ring is
order-isomorphic with a subring of the ring of all continuous
real functions on some compact Hausdorff space, with the usual
partial order. A corollary is a theorem first proved by Harrison:
Let K be a partially ordered ring satisfying conditions (1) and
(2), and suppose the positive cone of K is maximal in the
family of all subsets of K which exclude —1 and are closed
under addition and multiplication, Then K is order-isomorphic
with a subring of the reals,

The present paper is inspired by David Harrison’s recently begun
program of arithmetical ring theory where the basic objects are primes
and preprimes; the positive cones of a ring are example of preprimes.

Throughout the paper, K will be a ring with unit element 1, and
N will denote the set of positive integers. A preprime P in K is a
nonempty subset of K excluding —1 and closed under addition and
multiplication. A prime in K is a preprime maximal relative to set
inclusion, A preprime P is infinite provided it contains both zero
and 1, and is conic if PN (—P) ={0}. A conic preprime is simply a
positive cone and induces a partial order: r =2 y=y=cr=2x — yec P.
A preprime P is Archimedean if for all x in K there exists a natural
number n with » — « in P, (condition (2) in the definition of Stone
ring) and is (AC) if from 1 + nxz e P for all n e N follows x € P (condi-
tion (3)). We redefine a Stone ring as a pair <X, P> where P is an
infinite conic Archimedean (AC) preprime in K. An imbedding of
<K, P) in <K', P"> is an injective ring homomorphism : K — K’ such
that P = 4—(P'). If X is a compact Hausdorff space, C(X) denotes
the ring of all continuous real functions on X, P(X) denotes the subset
of nonnegative functions, If K is any subring of C(X) then
<K,K N P(X)y is a Stone ring. The principal tool in the proof of
Theorem 1 is the Stone-Kadison ordered algebra theorem [3; Theorem
3.1], which characterizes C(X) as a complete Archimedean ordered
algebra, To imbed a Stone ring <X, P) in such an algebra we show
that K is torsionfree, imbed it in a divisible ring K,, put a norm on
K, and then complete it to K*. At each step we have an imbedding
.of Stone rings:
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where the last is Kadison’s order-isomorphism, If P is a prime then
so is Py. [An order-isomorphism is an imbedding onto.]

In the proofs following, <K, P> is a Stone ring, N is the set of
all positive integers.

ProrosiTion 1. If ne N,aec K, and na = 0 then a = 0.

Proof. By the unique factorization in N, it is enough to prove
the proposition for the case where % is a prime number, Suppose for
all primes ¢ < p and all ae K,ga =0 implies ¢ = 0. Then for all
n < p and all ae K, na = 0 implies @ = 0. Now suppose that pa = 0
but a 20. By the Archimedean property choose m in N with
m+4a=0,c=m—1+ 20, Then px =0,1+ 2 =0 and for all =
in N, 1+ (pn+dx=0, if d=0 or d=1. [In case p =2 this
implies that 1 + ka = 0 for all k, so « = 0 by (AC), a contradiction;
hence 2a¢ = 0 implies ¢ = 0.] Now let 1 < d < p, with d in N, Since
p is a prime there exists ¢ in N, with 1 <e < p,ed =1+ pn, for
some . in N. Then e(l+dx)=¢+ 1+ pn)x=(e—1)+ 1+ 2) +
(pnz) = 0. Since e < p this implies that 1 +dx = 0. So for all &
in N1+ (pk+d)x=1+de+ pkx=0,0d=<p—1. Thatis, 1+
ne =0 for all » in N. By (AC) again, = = 0, a contradiction. So
a = 0 and the induction is complete,

Now put

Ky=QRK = {k/n;: ke K,ne N},
Py ={p/n;pe P,ne N}.
p: K — Ky, p(k) = k/1 .

ProposiTION 2. <Ky, Pyy is also a Stone ring. If P is a prime
then so is Py. ¢ is an imbedding.

Proof. That ¢ is injective follows from Proposition 1. If k/n,
for k¥ in K, n in N, belongs to P,, then k& belongs to P. For k/n
in P, implies k/n = p/m, for some p in P, m in N, so mk = npe P,
By Proposition 1, ke P, Hence ¢ is an imbedding. The preprime,
infinite, and conical properties of P, follow easily from the correspond-
ing properties for P. For the Archimedean property, let k/m be
arbitrary in K, (k in K, m in N) and choose n in N with »n > k.
Then n — k/m = (nm — k)/m belongs to P, since nm > k,me N. Now
if 1+ n(k/m)= 0 holds in K, with m in N,k in K, and for all =
in N, then for all n, (1 + nk) =1 + mn(k/m)e Py. Since ¢ is an
imbedding, 1 - nke P. By the (AC) property for P, ke P, kjmec Py,
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This establishes (AC) for P,. Finally let P’ be a preprime containing
P, and let P, = ¢o(P’). Then P, is a preprime containing P. If the
first containment is proper so is the second. This proves that if P is
a prime then P, is a prime.

Note. The additive group of K, is divisible. If K were already
divisible then ¢ would be an order-isomorphism of <K, P} onto
{Ky, Py>. The rational multiples of 1 in K, form a field order-
isomorphic with @.

Now define ¢t on K, by

W) =inf{r; —r<ax<r req.

ProrosiTION 3. The function ¢ is a norm on Kj:

(a) tx)=0;tz) =0 if and only if z = 0.

(b) tx+ y) = t(x) + t(y).

(c) tlxy) = tx)t(y)

(d) t(rx) = |r]|t(x) for r in Q.
Put K* equal to the completion of K, P* equal to the closure of P,
in K*. Then {K*, P*> is a Stone ring and an Archimedean ordered
algebra as defined by Kadison.

Proof. The property (a) follows from (AC). Properties (b) and
(¢) follow from: if —r<ax<r,—s<y<s then —(r+s)<z+
y<r+s,and —rs <axy < rs. See [1], §2. The proofs there make
no use of commutativity or of multiplicative inverses. Property (d) is
a consequence of: —» < ¢ < 7 if and only if —r¢ < qx < rq, where ¢
is a positive rational. It is clear that ¢(—x) = ¢(x) and for rational
r,t(r) = |r|. We now identify K, with its injection in its completion
K* and note that P* N K, = Py: for if ke P* N K, then k = lim p,,
. € Py, and p, may be chosen so that —1/n <k — p, < 1/n for all
n e N; it follows that 1 + nk > np, > 0 for all ne N and thence by
(AC) that ke P,. The reverse inclusion is obvious. It remains to
prove that P* is an infinite conical Archimedean (AC) preprime. It is
certainly closed under addition and multiplication. Let xe P* N (—P*).
Then there exist positive sequences p, and ¢, with ¢ = limp,, —2 =
limg,, 0 = lim (p, + ¢,). Thus if ¢ is any positive real then for all
large n,0 = p, = p, + ¢, < ¢, s0o z = limp, = 0; P* is therefore coni-
cal, Let ¢, e Ky, with 2 = lim x,. The Cauchy sequence {x,} is bounded
in norm so there exists an integer m with m > «, for all n. Hence
m — & = lim(m — x,) € P*, m > x. This shows P* is Archimedean,
Now let 1 + nxe P* for all » in N (xe K*). P*, as closure of P,
is closed and hence contains x = lim (¢ + 1/n), since « + 1/n belongs
to P*, Thus P* is (AC). That 1e P* and —1¢ P* are obvious, and
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it has now been proved that <X* K P*> is a Stone ring. The closure
of @ in K* is (order-isomorphic with) the reals R. Using ¢ for the
induced norm in K* we have

(e) t(rx) =|r|t(x) for all » in R,
R is contained in the center of K* and so (K*, P*> is an algebra
over the reals. For the sake of completeness we list Kadison’s axioms
for an Archimedean ordered algebra, Each is obviously satisfied by
(K*, P*) with e = 1.

1. K* is a real algebra with unit e.

2. P* is closed under addition, multiplication, and multiplication
by positive reals.

3. For every x in K* there exists a positive real » with re > x.

4, If re = x for all positive real », then x =< 0.
An Archimedean ordered algebra is complete if and only if it is
complete in our norm ¢. Thus (K*, P*) is a complete Archimedean
ordered algebra. Collecting results of Propositions 1, 2, and 3 and
applying Theorem 3.1 of Kadison we get our Theorem 1,

Now we are ready to prove the corollary. As we remarked earlier,
Harrison showed that a prime P satisfying the hypotheses there is also
(AC). By Proposition 2, P, is also a prime. Now identify each of
(K, P)>,{Ky, Pyy,{K*, P*) with its imbedding in <{C(X), P(X)», so
that P(Py) is the set of all nonnegative functions in K(K,). The
proof is completed by showing that X is a singleton. Suppose that
2z and y are distinct points of X. Since X is normal and K, is dense
in C(X), Urysohn’s lemma guarantees that there is a function f in
K, with f(z) >0, f(y) <0. Then P'={g;9e€ K, and g(z) =0} is a
preprime in K, containing P, and f, while f is not in P,. This
contradicts the primality of P, and the corollary is proved.

Two ExampLEs. 1. Example of a ring <{K, P> where all the
conditions of Theorem 1 hold for P except the Archimedean condition.
Let K be the ring of all 2 x 2 real matrices, P the set of matrices
with every entry nonnegative.

2. Example of a ring {K’, P> where P’ satisfies all except the
condition (AC). Put K’ equal to the set of all triangular 2 x 2
matrices over B and let P’ be the subset consisting of 0 and all
matrices with strictly positive diagonal entries, Thus if either of the
Archimedean conditions is omitted then commutativity cannot be
deduced.
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