PACIFIC JOURNAL OF MATHEMATICS
Vol. 21, No. 2, 1967

MACDONALD’S THEOREM WITH INVERSES

KEVIN MCCRIMMON

One of the fundamental theorems in the theory of Jordan
algebras is that of I. G. Macdonald which says that any identity
in three variables z, i, z of degree zero or one in z will be
valid in all Jordan algebras if it is valid in the special

Jordan algebras,
In this paper we will extend this result to identities

which also involve the inverses of x and y.
Following the method and notation of N. Jacobson [3] we have the

THEOREM. If & and ¥, are respectively the free Jordan algebra
and free special Jordan algebra on three free gemerators x,y,z and
the 1nverses x7, y~', with € and €, the associative algebras of linear
transformations in ¥ and Y, respectively generated by the multipli-
cations by elements of the subalgebra generated by x,y,x™, y™*, then
the camnonical homomorphism v of € onto €, is an isomorphism. If
B is the free associative algebra with free generators f;(i,j€Z)
and © the homemorphism of F onto € determined by f;;— U, ;
then the kermel of w is the ideal RN generated by the elements

( 1 ) fo,o -1
(11 ) zfi,ofj,k - (2fi2,o - fzi,o)fj—i,k - fi+j,k
( 1 ) 2fo,ifk,j - (zfozz - fo,zi)fk,j—i - fk,i-:—j

(i)  2F50fi0 = Ficen(@Fio — Frio) = firin
kar]'fO,i - fkyj—i(zfoz,i - f‘O,2i) - fk;i+]' .

From this as immediate corollaries we have

MACDONALD’S THEOREM WITH INVERSES [4]. If & and I, are
the free Jordan algebra and free special Jordan algebra on three
free generators x,y, z and the itnverses x=*,y~' then the kernel of
the camonical homomorphism v of  onto I, contains mno elements
of degree zero or one in =z,

SHIRSHOV’S THEOREM WITH INVERSES [6]. The free Jordan algebra
on two free generators x,y and their inverses x~', y=* is special.

More generally, we have the

SHIRSHOV-COHN THEOREM WITH INVERSES [1]. Any Jordan algebra
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316 KEVIN MCCRIMMON
generated by two elements and their inverses is special.

Indeed, such an algebra & is a homomorphic image of the free
Jordan algebra © generated by z,y,x™*,y™'; by Shirshov’s Theorem
with Inverses © = O,, the free special Jordan algebra generated by
x,y, vt y~'; thus for some ideal & we have & = 9,/R,. By a result
of P. M. Cohn, & is special if and only if

AKA N D, C R,

where O, is imbedded in the free associative algebra 2l generated by
xz,y, s,y (we are following the argument of [1, p. 307]). Noting
that &, ¢ 9, and the elements of , are symmetric under the reversal
involution * of 2, we see AKAN O, is contained in the linear span
of the

f(x! Y, x——ly y_ly k) = akb + b*ka*

where a,be?, ke, and f(x, y,x7", ¥y, 2) is a symmetric element of
the free associative algebra ®B generated by x,y, 2, !, y~'. Ordering
the generators of B by 2 <o <o <y <y we see that the tetrads

{watyy~} =1
{ze~lyy~} = 2.2
{oyy~} = 2.2
{reax=y™"} = z-y~*
{raa'y} = 2-y

are Jordan elements of B, hence by Cohn’s Theorem [1, p. 306]
fle,y, 2, ¥y, 2) is a Jordan element of B. As a Jordan product of
z,y, ",y and the element & of the Jordan ideal &,, the element
fx,y, e,y ", k)eR,. Thus AKAN H, K, as desired.

1. Preliminaries. By “algebra” we will mean algebra with
identity over a field @ of characteristic +#2; associativity and finite-
dimensionality are not assumed.

Recall [5, p. 18] that an element a of a Jordan algebra is
invertible with (Jordan) inverse b if

ab=1a-b=a.

In this case b is invertible with inverse a, and a, b generate a
commutative associative subalgebra; we write b = a~'. In a special
Jordan algebra the notion of Jordan inverse is equivalent to inverse
in the associative sense.

Given a set ¥ and a subset 9 we denote by J(X/Y) the free



MACDONALD’S THEOREM WITH INVERSES 317

Jordan algebra generated by % and the inverses of 9. If Y—-YP—
is a Dbijection of 9 onto a set P~ disjoint from X we may set
(XY = JEUYY)/R where & is the ideal in the free Jordan algebra
(X U Y generated by all y-y~* — 1, y*.y™ — y for yeP. Similarly
we have the free special Jordan algebra J,(X/2)) generated by X and
the inverses of 9); this may be regarded as the subalgebra of F(%/9)*
generated by X U 9™, where {(X/9) is the free associative algebra
generated by X and the inverses of 9.

If L, denotes left-multiplication by an element a of a Jordan
algebra %A we have the following operator identities

[Lm Lb~c] + [Lby Lc-a] + [Lcy La~b] = O

2
(2) L LI+ LLyL. + Lnaww = LosLe + LyLo + Lol -

If we set
(3) Ua»b = LaLb + LbLa, - La.-b

then we have U, = U,,,, L, = U,,, = U,,,. It is well known [3, p. 243]
that if X is a set of generators (containing 1) for a subalgebra B of
A then the operators U,,, for x,yeX generate the same algebra of
linear transformations as the L, for be®B. In particular, it is not
hard to see that if ®B is generated by »,y,«™", y* then the U, ; for
1,J € Z generate the same algebra © of linear transformations as do
the L, for beB.

2. The presentation w. The above remarks show that the
homomorphism z: & — & in the Theorem is surjective. We next show
that the ideal R generated by the elements (1) is contained in the
kernel of 7, i.e. n(f) = 0 for f of the form (i), (ii), (iii) in (1). Part
(i) is trivial since U, , = I. Parts (ii) and (iii) follow from the first
part of (ii) by symmetry in x and y and symmetry in the operator
relations (a consequence of the symmetry in (2); more precisely, this
“symmetry” corresponds to the canonical involution in the universal
multiplication envelope). The first part of (ii) follows from the following
lemma by taking a = a%, b = /=%, ¢ = y* and noting [5, p. 19] that
[Lyn, Lym] = 0 for all m, me Z.

LemMMmA 1. If elements a,b,c of a Jordan algebra satisfy
[Lar Lb] = [Lazy Lb] = 0
then
2LaUu~b:c — Uan:c "I_ Ua,2~b,a .
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Proof. By (2), (38) and our hypotheses we have

2L,U,,. = 2L AL L, + L.Loy — Le.op} + 2[ Ly, Ly{L,.. — L.L,}

= {2L,Ly+}L, + 2L{L.L,y — Le.oy) + LyLg,.. — LyL, L}
+ L#{2L,L,L, — 2L,L,..}

={L,L,L, + L., — L,L2}L, + 2L {L,L.,L, — L,L,..}
+ Lb{LcLa2 - Lc~a‘3}

={2L:L, + L., — LpoL,}L, + 2L} L., L, — L,.,}
+ {L.Lgy + LpaLy., — LaL, Ly — L,. 2.5}

= {2L; — LaH{L,L. + L.L, — L;.;}
-+ {Laz'ch + LeLg., — Lc-(az'b)}

=U,U,, + Ugy,, .

Thus 7 induces a homomorphism o of U = F/R onto €.

LEMMA 2. If e;;eU = F/N is the tmage of f;,,€F and we set
A; = €0, b; = 2} — ay;, C; = €,;, d; = 2¢; — ¢,; them we have the follow-
ing tdentities:

(i) ap=b=c,=dy=¢€, =1
(1) 2w, = biej_ii + €1 g, 2Ci84,; = Ai€h, i + €yt
(i) 2e;,,0; = €;_i1b; + €iviry 2€1,5C; = €4iili + €pivj
(iv) 2a,0; = b;a;_; + sy, 2¢:6; = diCi_; + Coy;
(4) (v) Z2a;0; = a;_b; + asyj, 2¢56; = ¢;_i8; + Civj
(vi) a;=a_ b, =ba_;,¢c; =c_d; = d,c_;
(vil) bb_;=0b_b;=1,dd_;,=d_d; =1
(viii) [a;, a;] = [a;, 0,1 = 0, [e;, ¢;] = [es, d;] =0
(ix) bib; = biyj, did; = dyy; .

Proof. (i)-(vi) follow immediately from the relations (1). (vii)
follows from

bib_; = b{2a%; — a_y} = 2a;0_; — bia_y

(by vi) = a, (by iv) = 1 (by i). For (viii) it suffices to show [a;,a;] =0,
and this only for 4,7 = 0 since b; = 202 — a,; and a_; = b;'a; by (vi),
and finally only for ¢ =1, 7 = 2 since (iv) shows by induction that the
a; for 1 = 0 are generated by a,, b, (hence a,, a,). But (iv), (v) show
2la,, a,] = [b, ] = —[a,, a,] = [a;, @], so [a;, @] =0 as desired. For
(ix) it suffices to show b, = b{, and this only for ¢ = 0 by (vii); this
follows by induction from (i) and
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biv1 = 22}, — Qg
= 20;,{20;0; — @;_1bi} — @ur,  (bY V)
= 2{a;b; + agiifan — {@b;_; + a5}, — {2a:,0, — a0} (by V)
= 2a,b,a, — a,b;_,b,
= {20} — a,}b; (by viii and induction)
= bb; .

3. The idea of the proof. We have surjective homomorphisms
0:A—E and v:E—E,, and a linear mapping z: €, -, by L — L(z).
The theorem will be proven if we show g = tovoo is injective, for
then ¢ and v will be isomorphisms. This will be the case if we find
a spanning set in A whose image under g is independent in ,. A
hint is provided by Cohn’s Theorem [1, p. 307] which says that ()
is precisely the set of all elements of the free associative algebra
B(x, v, 2/x, y) which are linear in z and symmetric under the reversal
involution *. A basis for this set consists of the distinct

fi(p, @) = ¥{pzq* + qzp*} = f(q, p)

for monomials p, g € (x, y/x, y). The idea of the proof [3, p. 249] is
to construct pre-images

S,9) = f(q, )
in A satisfying
(5) 1(f(p, Q) = fo(0, Q) .

By definition the images in &, will be independent, and the only
question is whether these elements span 2. Since 2 is generated by
1 and the elements b,,d,, e, a;, ¢, it suffices to show the set of
f(p, @) contains 1

(6) fL,1) =1
and is invariant under left multiplication by the generators

(1) b.f(p, q) = f(a*p, a*q)
(i) dvf(p, 9) = f(¥*p, ¥*O)
(7) (i) e f(p, @) = 3{f@*p, ¥'0) + fy'p, a*@)} (k, 1+ 0)
(iv) @ f(p, @) = { f(*p, @) + f(p, ¥"Q)}
(v) ef(p,9) = W, @) + fp, v} .

To this end we define f(p,q) by induction as follows. First we
inductively define sets %,,9), (n = 0) of monomials in F(x, y/x, ¥) by
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%= 9= {1}
Yo = {2k #0,p€D,} Do ={y'plk +0,pe’,}.
Next we define sets of pairs of monomials by

@n’m = @7’/ >< @m U @m >< @’ﬂ- = g’m "
’87! »m = %‘ﬂ >< ?’_)m U @m X '%711 b

Finally, f is defined recursively on the sets %,,.., Dun, Sum DY
(D.0) On %, = Yoo = Bow = {@, D}

f@A,1) =1.
(D.1) On %,y for 4,7 #0,1=7,(r,3)€Dum
f@ir, a's) = f(als, z'r) = b; f(xr,s) .
(D.2) On Qyiimes: for i,5 #0,0=7,(r,s)€Xn
Fy'r,y's) = f(y's, y'r) = d;f(y"r, 5) .
D.3) On B,i1me: for 1,5 =0,7¢9,,s¢%,
F@'r,y's) = f(y's, o'r) = 2e,,;f(r, 5) — f(y'r, o's)
which is defined by induction unless » = m = 0,7 =s =1, and on 3,,.:
F@y) = Fy, @) = e .
(D.4) On %, =% 01 = Basrer for 1 £0,7€9,
f@ir,1) = £, 2'r) = 2a,f(r, 1) — f(r, «%)
which is defined by induction if # = 0, and on X,,, = %,,, = 8,,.:
fl, 1) = fA,2°) = a;.
(D.5) Similarly, on 9,:10 = Dosnsr = Bornsr:
fyir, 1) = fQ, y'r) = 2.6 (r, 1) — f(r,¥)
and on 9, = Y. = Bot
fw, ) =51, y) =c.

It is easy to verify that f(p,q) = f(q,p) is a well-defined element
of 2 for all monomials p, ¢ in F(x, y/z, y).

4. The main lemma. The previous considerations have reduced
the proof of the theorem to the following.
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LEMMA 3. The elements f(p,q) = f(q, p) W defined by (D.0)—
(D. 5) satisfy (5), (6), (7).

Proof. (5) can be verified at each step of the inductive definition,
and (6) is just (D.0). We will prove (7.i)-(7.v) for (p, q) in %,,., D,
8.,» by induction on the weight n + m; the case n» + m = 0 follows
immediately from the definitions (D.1)-(D.5), and we assume the result
proven for all weights less than n + m. We claim that if 4,70
(but %,1 = 0 are allowed) then '

(1) (7, 8) €Dutimes = b f (&7, 27s) = f(x"ir, F+is)
(i) (1, 8) €Y.t X Xy = b, f(&Pr, yis) = f(aFir, xFyis)
(iil) re9,.=b.f(x'r, 1) = f(a*r, z¥)
1v) (7, 8) € Dueiymor = 2€;, f (&7, 27s)
= f(x* iy, y'uis) + f(y'atr, xFtis)
(v) (7,8) €Dt X Xy = 2a, f(xir, yis)
= f(@**ir, yis) + f(@'r, s*y’s)
vi) r€9,..=2a,f(@r, 1) = f@r, 1) + f{z'r, &¥) .

(8)

These suffice to establish the various cases of (7) according to the
following table:

7.1 7.iv 7.iil 7.V 7.ii
Xoim 8.1 8.iv 8.iv 8.iv def
%,0=238.,, | 8.iii 8.vi def def def
Bam 8.ii 8.v def 8.v* 8.ii*
Do = Bo,n | def def def 8.vi* 8.iii*
D def 8.iv* 8.iv* 8.iv* 8.i%

Here the columns indicate the particular cases of (7) and the rows
the particular possibilities for (p, q), with n, m > 0; “def” means the
result follows directly from the definitions, and * denotes the dual
formula obtained by everywhere interchanging « and y. The proof of
(8.1)-(8.vi) will be broken into corresponding Cases I-VI.

Case 1. (@) If k+ 14,k +J=+0, say 1 = J, then

b f(@'r, xis) = bb, f (a7, ) (D.1)
= by f (@7, 8) (4.ix)
= f(a*tir, xh+ig) . (D.1)

(b) If, say, k + 7 = 0 then
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b, f(x'r, xs) = bb; f(x*Ir, s) (induction 7.i)
= f(atFr, xitks) | (4.vii)

Case II. (a) If 0 %1 + k =k the result follows from (D.1).
b If0=¢+k m=n=0,r=s=1 we have

bkf(xiy yj) = blce—kyj (D'3)
= 2ak60,j — €L,j (4.ii)
= f(1, a*y’) (D.4)

= f(a**, afyd) .
(¢) If 0=4+ %k but » +1 or s =1 then

b f(@'r, yis) = bi{2e:,;f(r, 8) — f(y'r, «'s)} (D.3)
= 2{2a,¢,,; — €., ;}f (1, 8) — f(z*y'r, 5)

by 4.ii and induction 7.i—which is applicable since by our assumptions
on r and s (yir, #’s) has weight less than n + m)

= daye; f(r, s) — {f(@"r, y's) + f(y'r, a*s)} — f(a*y'r, s)

(induction 7.iii)
= da,c; f(r, s) — f(&*r, y's) — 2a, f(y’r,s) (induction 7.iv)
= 2a,f(r, y's) — f(a*r, y's) (induction 7.v)
= f(r, x*y’s) (induction 7.iv)
= f(at*ir, atyis) .

(d)y If 04+ k <k then

b, f(xir, yis) = b {2a,;f(r, y's) — f(r, x'y’s)} (induction 7.iv)
= bb,{2a_, f(r, y's) — f(z7r, y's)} (4.vi, Case IIb, ¢ above)
= by f(r, x7yls) (4.ix, induction 7.iv)
= f(&*r, a*yis) . (D.1)

Case 111, The proof is obtained from that of Case II by setting
J =0,s =1; the second line of the proof of (c) is justified by Case II
rather than by induction 7.i.

Case IV. We allow k or I to be zero, and we induct on |%] + |J |;
the result follows from the induction hypothesis if 7 or j is zero.

(a) If 4,7 have the same sign, say |¢| = |7]| > 0, then |7 — j| < 7|
80
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2¢,, f(@ir, ¥is) = 2e,,,b; f(xi~Ir, s)
(induction 7.1)
= 2{201;,10; — €105} [ (@7, 8)
(4.1ii)
= 2¢,. 5, f('r, 8) + f(x*ir, a%s)}
— {F@ I ys) + (e, o)
(induction 7.iii-iv)
= {2e1 5. f (@7, 95) — f(y'w*ir, a¥s)}
+ {2e;. 5, f ('r, ) — f(a*T 7, yls)}
= f(atr, yuis) + f(y'air, xFis) .
(induction, [7 —J |+ |7 <|2|+ 7]
(b) If 7,7 have opposite signs, say |[1]| = [7| > 0, then |7 + j| < |7]
)
2¢,,,, f(x'r, 7s) = 2¢,,,{2a,f(xir, s) — f(xiFir, s)}
(induction 7.iv)
= 2{e1_;ub; + €1} (@', 8) — 2e,, f(x 7, 5)
(4.iii)
= 2¢,_j, f (@i, a7s) — f(y'aitir, aks) — f(x™ iy, y's)
+ f(xi+j+k7., yls) + f(ylxi,r’ xkﬂ's)
(induction 7.i, 7.iii)
= f(a*ir, y'ais) + f(y'air, x¥is) .
(le+7]+ 171 <l|i]+ |5, induction)

Case V. (a) If m=mn=1,r =s =1 we have

2akf(£0i, y]) = Zake»;,j = ei+k,j + bke,;__k,]- (D.3, 4.ii)
= @, y9) + b f(27F, y) (D.3)
= f(a¥*, y?) + f(a, x*y7) . (Case II-III above)

(b) If 1 or s =1 then
2a, f(@ir, yis) = 2a,{2e;,;f(r, s) — f(y'r, a’s)} (D.3)
= 2{eisr,; + biir, i} f (7, 8)
- {f(xkyj/ry xis) + f(yjry xi.l—ks)}

(by 4.ii and induction 7.iv—which is applicable since by our assumptions
on r and s (y'r, 2's) has weight less than n + m)

= {2ei+k,jf(T’ S) - f(yiry mi_l—ks)}
+ bi{2e; 4,1 (7, 8) — f(yir, &)}
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(induction 7.i applicable to (yr, xi*s)—or use Case II above)

= f(xit*r, yis) + b, f(a*Fr, y’s) (induction 7.iii)
= f(a*ir, yis) + f(xir, x*yis) . (Case 2 above)

Case VI. This follows from Case V by setting j = 0, s = 1 through-
out the proof; the second line in the proof of (b) is justified by Case
V rather than by induction 7.iv.

This completes the proof of (8), the Lemma, and all the Theorems.

5. Remarks and conjectures. We will now indicate how the
above proof can be modified to prove Macdonald’s original theorem
without inverses; in a similar manner we obtain a one-inverse form

of the theorem.

We require that all indices 7, j, k, I ete. be nonnegative; this
modifies the free algebra ¥ of the theorem, so we add to the relations
(1) the further elements of R

fi,ofj,k =+ fj,ofi,k - (2]‘?,0 - fsj,o)fi_j,ofo,k - fi-(—j,k
ﬁ),iflc,j + fo,jfk,i - (zfoz,j - ﬂ,zj)fo,i_jfk,o - fk,'i+j

for © = j corresponding to the relations

(1.iv)

@i, + @i = bjtli_jC + €ivjn

(4.x)
Ci€r,j T Ci€ri = A;Ci 0 + €151

in the algebra A. It suffices to establish the first relation in (4.x),
and this follows by putting ¢ = 27, b = 2*7, ¢ = * in the following
addition to Lemma 1: if «, b, ¢ are elements of a Jordan algebra
satisfying

[Lcu Lb] = [Lm La-b] = 0
then
LaUa-byc + La~qu,c = UaLch + Ua2-byc .

The only other thing to be changed is the proof of (8). Cases Ib,
IIb-c-d, and IVb are unnecessary, but the proof of Case V works
only for ¢« = k; for 7 < k we must use the relations (4.x).

It would be nice if the inverse-less and one-inverse theorems
could be obtained directly from the two-inverse form, which leads to
a general

Congecture. If %,C%, 9,C9 then the canonical homomorphism

X(X/Do) — (E/D) is injective.
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If we represent J(%.,/2),) by J(E, UYs")/&, and J(E/Y) by JEUY /K
as in the first section of the paper then the conjecture amounts to

SEUYINR =K.

It is also sufficient to consider only the case X = ¥%,.
More generally, we have a

Conjecture. J(X) can be imbedded in a universal Jordan division
algebra ©(X) such that the canonical homomorphisms £(%/9) — D(X)

are all injective.
It is easy to see that this implies the first conjecture by con-

sidering the commutative diagram

JE/Yo) — J(E/Y)
AN /
N\ e
D)
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