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BIORTHOGONAL POLYNOMIALS SUGGESTED
BY THE LAGUERRE POLYNOMIALS

JosepH D. E. KONHAUSER

Let Yi(x; k) and Zi(x; k),n=0,1,---, be polynomials of
degree » in z and z*, respectively, where z is real, k is a
positive integer and ¢ > — 1, such that
(1) S“x“e‘”be(x; karide is {O for < = 0.’ Leyn—1;

0 not 0 for 71 =1n;

and

(2) wace"”Zﬁ(a&; kxidx is {O for i = O.’ Loeym—=1;
0 not 0 for ¢t =n .
For k = 1, conditions (1) and (2) reduce to the orthogonality
requirement satisfied by the generalized Laguerre polynomials,
If (1) and (2) hold, then

wa"e‘“Y;(x; 1) Z5(; Bydes is {0 for 4,5=0,1,--50%7;
0 ! not 0 for 7= j;

and conversely.

For both sets of polynomials, we shall establish mixed
recurrence relations from which we shall derive differential
equations of order & + 1. From these mixed recurrence rela-
tions pure recurrence relations connecting % 4+ 2 successive
polynomials can also be obtained. For k =1, the recurrence
relations and the differential equations for both of the poly-
nomial sets reduce to those for the generalized Laguerre
polynomials.

For k = 2, the recurrence relations and differential equations are
essentially those for polynomials introduced in 1951 by L. Spencer and
U. Fano [5] in a paper dealing with the penetration of matter by
gamma rays. For the polynomials in 2° Spencer and Fano gave
formulas, derived mixed recurrence relations, and presented a third-
order differential equation of the form

(3) A@@)yy” + By + C@)y, = Non

where A(z), B(x), C(x) are functions of x independent of n and X, is
a parameter independent of x. In 1958, S. Preiser [2] showed that,
apart from real linear transformations, only for the case & = 2, and
only for the weight function z°¢=, ¢ > —1, do there exist biorthogonal
polynomials in «* satisfying a third-order differential equation of the
type (8) and such that the polynomials in x satisfy the adjoint of (3).
For each set of polynomials for the case k = 2, Preiser [2, 3] established
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pure recurrence relations connecting four successive polynomials, as
well as several mixed recurrence relations, He also gave a generating
function for the polynomials in 2

In 1965, J. D. E. Konhauser [1] considered biorthogonal polynomials
in real polynomials r(x) and s(x). He discussed properties which are
analogues of properties of orthogonal polynomials, Included were
necessary and sufficient conditions for the existence of biorthogonal
polynomials, sufficient conditions which ensure the existence of pure
recurrence relations, and information on the number and location of
the real zeros of the polynomials.

II. THE POLYNOMIALS IN z*

1. Biorthogonality. The generalized Laguerre polynomials [4],
which may be written

c _Mn . jn___ij___ _
(4)  Li@) = nl 2 ( 1)<j)F(j+c+1)’ ¢> -1,

satisfy the orthogonality condition
0,t=0,1, —1;

Smxce—’”L;(a:)x’dx = { ’

0 #=0,i=mn.

Expression (4) and the results of Preiser [2, 3] for the case k = 2
suggest that we investigate the candidacy of the polynomials

(5) Zia; Iy = LER Z.c +D »‘é(— )’( )F(kj fc 1)

as members of one set of a biorthogonal pair.
In (2), we replace Zi(x; k) by the right side of (5), then carry
out the permissible interchange of summation and integration to obtain

P(kn+c+1) 2 RLY 1 gkl beti
n! Jgo( b F(ky+c+1)§e v d
I'kn +¢+1) = I'(kj +c+i+1

- I L3 ) B -
n! = j) I'(kj+c+1)
_ [’(Im—;c—!— 1) ﬁ 1),< )DWWH
7=0 j =1

I'(kn —i—'c + 1) Dias
n!

c“Z( 1)’( )x’” N

_ I'(kn +c+ 1) Digeti(l — by
n!

b
=1
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which is zero for ¢ =0,1, ..., n — 1, but is different from zero for
i = n. Therefore, the polynomials (5) do satisfy orthogonality condi-
tion (2).

Before determining the other polynomial set of the biorthogonal
pair, we shall establish several relation ships satisfied by the polynomials
in oF,

2. Mixed recurrence relations. We shall find it convenient to
introduce the factorial function defined by
(a), = 1, o+ 0;
k
(@ =1l (ax+7—1) =Ia+ k) (a),a=+0, k=1,
i=1

The first recurrence relation we shall establish is
(6) vDZ(w; k) = nkZi(w; k) — k(kn — &k + ¢ + 1),Z;_y(»; k),

which is suggested by, and, for % =1, reduces to a well-known
recurrence relation for the Laguerre polynomials [4].
Considering the difference

(7) nkZws k) — k(kn — k + ¢ + 1),Z°_(a; k) ,

and using (5), we obtain

kl(kn +c¢c+ 1) T s ak
(n — 1)! [Z:o(_l) (j)F(lcj'+c+1)

= ; n—1 ki
%“4%.j>nm+c+n]

_klkn+c+ 1) & Iy (n—1 ki
T (n—1) %f*{@) (j ﬂnw+c+n’

which may be written

al(kn + ¢ + 1) i (_1)j(n) fejaki—t

al §) TG+ vy ~ PR,

establishing (6).
Alternatively, we may write (7) as

ka*l(kln — 1+ e+ k] +1) & (_1)j(n -1 k=D
(n — 1) =0 j—1)Iklg — 1] + [e + k] + 1)
__kxt(E[n — 1] 4 [e + k] + 1)
B (n — 1)1

S (T i )
=0 j kg + e+ k]l +1) S
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which, together with the preceding result, gives the relation
(8) DZy(w; k) = —ka*Z; 1 (w; k)

connecting polynomials corresponding to ¢ and ¢ + k. For k=1, (8)
also reduces to a well-known relation for the generalized Laguerre
polynomials [4].

3. Differential ecjuation. Still another way of writing the
difference (7) is
kI(kn +c+1) $ (= (n—1 —xk]—— , which, in virtue of
n—1! = 1) T(kj+ ¢ +1)
(6), equals xDZi(x; k). Multiplying by 2z° and taking the kth deriva-
tive, we obtain

El(kn + ¢+ 1) 2 n—1 pkG—1+e
1)/ -
(n — 1)l JZ'( )(7—1) I(kj —k+ ¢+ 1)
I'kn —k 4+ ¢+ 1)
(n — 1!

n—1 [(n — 1 xk]
X Eo(‘”( i )zw "

= —k(kn — k + ¢+ 1) Z;_(x; k) .

= —k(kn — k + ¢ + 1),2°

Therefore,
(9) D¥a " DZ(x; k)] = —ka(bn — k + ¢ + 1), Z;_(x; k) .

Combining (6) and (9), eliminating Z: ,(x; k), we obtain the differential
equation of order &k 4 1

(10) DHar+DZ:(x; k)] = ot DZ(w; k) — nkatZ5(w; k)

for the polynomials in x*.

It is not difficult to verify directly that the polynomials in (5)
do satisfy (10). For & = 1, (10) reduces to the differential equation
for the generalized Laguerre polynomials [4]. For & = 2, (10) reduces
to the differential equation which was given by Spencer and Fano and
which was derived by Preiser [2, 3] by applying necessary conditions
for the existence of biorthogonal polynomial solutions to the coefficients
A(x), B(x), C(x) in (3).

For k > 2, it is not known if the polynomials Z:(x; k) satisfy a
differential equation of the form

ZA(x)y“’ =N, m < k+ 1,

Preiser [2, 3] has shown the answer to be negative for &k = 2.
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4, Pure recurrence relation. Applying Leibniz’s rule for the
kth derivative of a product to the left side of (9), we get

(11) é (?)[D"“%”“][DMZ;(:J:; k) = —kxt(kn — k + ¢ + 1), Z;_(%; k) .

The left side is a sum of derivatives of Z¢(x; k) from the first through
the k& + 1st. Elimination of the derivatives by repeated use of (6)
leads to a pure recurrence relation connecting % + 2 successive poly-
nomials, An alternate method for obtaining the pure recurrence
relation is given in [1].

We now turn to the polynomials in « which satisfy orthogonality
condition (1).

III. THE POLYNOMIALS IN 2

1. A suggested recurrence relation. We seek coefficients «a,,;
such that the polynomials

(12) }E Q"7
i=o0

satisfy orthogonality condition (1). Taking #n = 0,1, 2,3 and using a
method of undetermined coefficients, we obtain, each to within an
arbitrary multiplicative constant, the first four polynomials

1,

v —(c+1),

@ —(k+ 2+ 3+ (c+1)k+c+ 1),

® — Bk + 3¢ + 6)a* + [(2k + ¢ + 2)(k + 2¢ + 3)
+e+DE+e+Dx—(c+1)k+c+1)(2k+c+1).

For k = 1, the polynomials reduce to the generalized Laguerre poly-
nomials taken to be monic, so in a sense these polynomials, as well
as the polynomials in «*, may be considered generalizations of the
Laguerre polynomials.

The pattern of coefficients suggests the following difference equation
for the coefficients

(13) W= —[(k + 1)n —J 4+ (=k + ¢ + Dltus,jos + @usyo

where a,, =1 for all » and a;,; = 0if ¢+ < j. We shall use (13) as the
basis of a conjecture for a recurrence relation for the polynomials in x.
Then we shall use the recurrence relation to show that the polynomials
satisfying it satisfy (1). By uniqueness, established in [1], the poly-
nomials we seek are the polynomials which satisfy the recurrence
relation,
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First, we shall sacrifice the monic property of the polynomials by
modifying the difference equation (13) to

(14:) ]M’Lb,m - [k/n + j + (—k + C + 1)b7¢—-1:j - bn_l,j_ll

where b,, = 1,0;,; =0 if ¢ <J, b;,_, = 0 for all 4, so that the poly-
nomials in x are given by

(15) Yo k) = 3% by .
720

A result of the modification is that, for £ =1, (14) is a recurrence
relation for the coefficients of the generalized Laguerre polynomials.
Substituting for b,,; in (15), we get

InYe(w; k) = S [kn + 5+ (—k + ¢+ Dby @ — S5 by, .
7=0 7=0

Replacing # by » + 1, and noting that b,,,., = 0, we have

n+1 n+1

k(n + DYoo (e k) = >\ [kn 4+ 7 + ¢ + 1]b,, 07 — 3 b,,;-007

Jj=0 7=0

= (kn + ¢ + DYiw; k) + > 5by@i — 35 by, it
7=0 J=0

The first sum on the right side is #DY:(x; k) and the second is 2 Y:(x; k);
therefore, a suggested recurrence relation for the polynomials in « is

(16)  k(n + 1)Ye.(w; k) = aDYi(w; k) + (bn + ¢ + 1 — ) V(a3 &) .

2. Biorthogonality. To establish that the polynomials in =
satisfying (16) comprise the other set of the biorthogonal pair, we
must show that (1) is satisfied. We proceed by induction.

For n = 0, the integral in (1) has the nonzero value I'(c + 1) for
the only permissible value of ¢, namely ¢ = 0.

For n = 1, we must verify that the integral in (1) is zero for
%2 = 0 and nonzero for ¢ = 1. For ¢ = 0, we have

g”m—x Ye(o: kydz = roﬁe“”k“l(c +1— w)de
=kMc+DI'(c+1)—TI(c+2)]=0,
where Yi(x; k) = k~'(c + 1 — 2) was obtained from (16) for » = 0.
For ¢+ = 1, we have
wa”e—mx"Yf(x; kydx = ra:”’“e*”k“l(c + 1 — z)dx
0 0

= k(e + DI+ k+1) — I+ k + 2)]
= —I'c+k+1)y+=0,
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Continuing the induction argument, we assume that the polynomials
Yix; k),2=0,1, --., n, obtained by repeated application of (16), satisfy
orthogonality relation (1). To complete the induction argument, we
must show that

O,i:0,1,---,n;

an 0T Ll k) {;«éo,qz:n+1.

Substituting for Y:,.(x; k), as given by (16), we obtain
k- + 1)“lgjx°+“‘+le—“DY;(w; k)da
+ k7 (n + 1) S:(lm + ¢+ 1 — p)x+ite=Yi(x; k)de .

If we integrate the first integral by parts the sum becomes

k(0 + 1)—1Sj[x°+ik+1 — (e + ik + Do Ye(w; k)do

+ En + 1)"1S:(lm too+ 1 — a)etier Ye(a k)de

which may be written
(18) (n + 1)—1§:xc+fke—w(n — )Y k)

The integral in (18) is zero for ¢ = » since the integrand is zero.
By hypothesis, Y:(x; k) is orthogonal to 2%, 0 < ¢ < n; therefore, for
7 < m, the integral in (18) is zero.

For 7 = n + 1, the integral has the value

—(m+ 1)—1§”m°*-fw+ke~x Ye(o; k)ds = (— 1) + kn + k + 1),
0

which is different from zero, the right side having been obtained by
n applications of (16) each followed by an integration by parts.

3. Expression for Y(w;k). Preiser [2, 3] obtained a closed
form for the polynomials in # for the case k = 2 by applying Cauchy’s
Theorem to the integral-form solution of

eD*Y (2;2) + (1 + ¢ — 32)D*Y (x; 2)

(19) + 2 — 1 — e)DY  (x;2) = 2n Y (x; 2) .

A closed form for the polynomials is desirable but is not essential,
since certain properties of the polynomials can be established without
one. By a method similar to that of Preiser, we shall find polynomials
solutions of (19) in integral form, conjecture the form of the integral
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for the general case, show that the polynomials so obtained satisfy

(16), and then, using the integral form, establish recurrence relations

which will be used to derive a differential equation for the polynomials.,
Equation (19) may be written

(20) 2" -3y +2¢) + A + o)y —2(1 + )y —2ny]l =0.
We assume a solution of the form
(21) y = | ettt

J0o

where the function ¢(¢) and the contour C are to be determined.
Differentiating successively and substituting into (20), we get

——xS (& + 3¢ + 2b)e-*t(t)di
g
+ S [(L + ) + 2(1 + o)t — 2n]e==*a(t)dt = 0 .
ag
Integrating the first integral by parts, we obtain

0 = (£ + 3t* + 2t)g(t)e""

- Sge—”[(3t2 + 6t + 2)4(t)
b8+ 3t 4+ 20 (B)]de + So[(l F o)t + 21 + o)t — 2nle-*t(t)dt .

We shall choose ¢(t) so that

[+ e)t* + 21 + )t — 2n — 3t* — 6t — 2]¢(t)
— (B + 3t + 2t)6'(t) = 0,
and the contour C such that

(22)

(23) (& + 3t + 2t)g(t)e*t| =0.
ag
From (22), we have
gt - _m+l  c+2n _ m+1
é(t) t t+1 t+2°

whence ¢(t) = K(t + 1)****/t"*(t + 2)"*', where K is an arbitrary con-
stant which we shall take equal to k/2 7i.
Substituting into (23), we require the contour C to be such that

k (t + 1)c+2n+1
2wttt + 2" o

If we take C to be a closed contour encircling ¢= 0, but not
t= —1or t = —2, then (23) holds and we have
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k S et + 1)

y = 0 tn+1(t + 2)n+1

T 27

On the basis of this integral, we conjecture that the polynomials
Y:(x; k) are given by

(24) Pu(2) =

k S e—-xt(t + 1)c+kn dt
2w Jo [(¢ + 1)k — 1]+

In view of the uniqueness established in [1], it suffices to show that
the polynomials (24) satisfy recurrence relation (16).
We have

(25) €Dg. (%) — g, (¥) =

B k S e~xt(t+1)0+kn+1 dt
2i Jo [(¢ + 1)F — 1]+

Integrating by parts, and applying (24), the right side of (25) becomes
—(¢ + kn + 1g.(x) + k(n + 1), (%) .
Therefore,
€D, (x) — w6,(x) = — (¢ + kn + 1), () + k(n + 1)g,.(2) ,

which is (16) with ¢,(x) in place of Yi(x; k).
In summary, we have

(26) Yi(a; k) =

k S et (t + 1)erkr
2wt Jo [(t + 1y — 1]+

Applying Cauchy’s theorem to (26), we obtain the following representa-
tion for the polynomials in :

Y”(x' k) = L o [ e~ (t + 1)°+k" ]I .
o nl ot Lt + kt* = + oo 4 k)t dle=o

We shall use (26) to obtain mixed recurrence relations for the
polynomials Yi(x; k).
4. Mixed recurrence relations. Observing that
(t + 1)c+}m — (t __’_ 1)c+kn+k _ (t + 1)°Tk"[(t + l)k _ 1] ,
we write (26) as

Yz(x; k) — k . S e—zt(t —|—1)c+kn—k dt — k . S e—-zt(t 4 1)¢+k(n—-1)+k
2mwi Jo [(¢ + 1)F — 1" 2xi Jo (¢ + DF — 1"

= YitMa; k) — Yit(x; k),

which, for & = 1, reduces to a well-known relation for the Laguerre
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polynomials [4].

Next, we shall derive a recurrence relation which, together with
(16), leads to a differential equation satisfied by the polynomials in z,
We have

de .

Ye o (x; k) = k S et F 1)cthnth

2xi Jo [(¢ + 1)F — 1"
Operating on Y: . (z; k) with (D — 1)* — (—1)*, we obtain

k(_l)ls § e—zt(t + 1)c+kn+k dt
2zt Jo[(t + D — 11"’

which is precisely the result of operating on Yi(x; k) with (D — 1)k,
Therefore,

(27) (D — 1 = (=)f]Y5(@; k) = (D — 1)*Yi(x; k) .

5. Differential equation. We shall now derive a differential
equation satisfied by the polynomials in . The equation turns out
to be of order k + 1, which is the order of the differential equation
(10) satisfied by the polynomials in 2*. The form of the differential
equation satisfiled by the polynomials in x is simpler than (10), the
coefficients being no higher than first degree in z.

In deriving the final form of the differential equation we shall
apply the following easily established

LEMMA. If y is a differentiable function of x possessing k + 1
dertvatives, then

(28) D — Vrx(D — 1y = [¢(D — 1) + k(D — 1)¥y .

From (16)
En+ DY (2 k) =[2(D — 1) + ¢ + kn + 1]1Y(x; k)
Substituting into (27), we get

[(D— 1) — (=1)¥)[x(D — 1) + ¢ + kn + 1]Y(x; k)
=fk(n + 1D — 1)*Y:(x; k) ,
which may be written
29 (D — 1) = (=1)[x(D — 1) + ¢ + 1] — kn(—1)*]Y(x; k)
(29) =k(D — 1)*Y(x; k) .

Applying the identity (28) to (29), we obtain, after some rearrangement
of terms, the differential equation
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(30) [[#(D —1) + ¢+ 1][(D — 1)* — (= 1)*] — (—=1)*kn] Y (2; k) = 0,
which may be written in the form
(31) [«¥ (D) + 2D)]y = 0.

Equations of the form (31) are solvable by the method used to solve
(20), the solutions being of the form (26).
For k = 2, (30) reduces to the equation for the polynomials in 2z

of Spencer and Fano [5, 2, 3].
For k£ =1, (30) reduces to the equation for the generalized Laguerre

polynomials [4], as did equation (10).

6. Pure recurrence relation. By eliminating the derivatives
between (16) and (29), using (28), one can obtain a pure recurrence
relation connecting % + 2 successive polynomials in x. An alternate
method for obtaining the pure recurrence relation is given in [1].

IV. THE INTEGRALS J,,,

We conclude our discussion of the biorthogonal polynomials Z:(«x; k)
and Y¢(x; k) with an evaluation of the integral

(32) g, = raz“e“’” Ye(as k) Z(@; k)das .
0

First, we shall show that b,,, = (—1)"/k™n!,n =0,1,2, --.. We proceed
by induction. For » = 0, we have b,, = 1. For = =1, from (14),
we get b, = —1/k. We assume that b, ,, , = (—1)"""k"'(n — 1)l
Taking 7 = » in (14), and noting that b,_,,, = 0, we get

bn,n = —bn—lyn——l/kn = (—1)”/16"%! y

completing the induction argument.
In virtue of the orthogonality of 27 and Z:i(x; k) for 7 <mn, we

have
J. = S“xce—wz,a(x; k) S b, wide = S“we—xz;(x; k)b, de .
0 i=0 0

Substituting for b,,,, and proceeding as in the establishment of the
biorthogonality property of the polynomials in x*, we obtain

k™n! n! =1
_I'kn +c+ 1)
B n! ’

which, for &k = 1, is the value of the corresponding integral for the
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generalized Laguerre polynomials [4].

BIBLIOGRAPHY

1. J. D. E. Konhauser, Some Properties of Biorthogonal Polynomsials, Journal of
Mathematical Analysis and Applications 11 (1965), 242-260.

2. 8. Preiser, An Inwvestigation of Biorthogonal Polynomials Derivable from Ordinary
Differential Equations of the Third Order, Ph. D. Thesis, New York University, 1958,
3. , Am imvestigation of biorthogonal polynomials derivable from ordinary
differential equations of the third order, Journal of Mathematical Analysis and
Applications 4 (1962), 38-64.

4. E. Rainville, Special Functions, Macmillan, 1960.

5. L. Spencer and U. Fano, Penetration and difusion of X-rays. Calculation of
spatial distributions by polynomial expansion, Journal of Research, National Bureau
of Standards 46 (1951), 446-461.

Received September 9, 1965.

UNIVERSITY OF MINNESOTA





