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THE PTOLEMAIC INEQUALITY IN HILBERT
GEOMETRIES

Davip C. KAy

Let M be a metric space, and if x and y are points in I,
let xy denote the metric. The space M and its metric are called
ptolemaic if for each quadruple of points z; (1 =1,2,3,4)
the ptolemaic inequality

X122 X3y + X103 Xolls = L1004 T3

holds. If the inequality holds only in some neighborhood of
each point the space and its metric are said to be locally
ptolemaic. Euclidean space is known to be ptolemaic and
therefore, locally ptolemaic. We are interested here in certain
non-euclidean spaces which may possibly be locally ptolemaic.
The author has proved in his thesis (Michigan State University
Doctoral Dissertation, 1963) that a Riemannian geometry is
locally ptolemaic if and only if it has nonpositive curvature,
and that a Finsler space which is locally ptolemaic is Rieman-
nian, The main result established here extends the theorem
regarding Finsler spaces to include Hilbert geometries as well:
A Hilbert geometry is locally ptolemaic if and only if it is
hyperbolic.

The ptolemaic inequality is related to problems of curvature in
metric geometry. Assuming this condition enables one to prove
that a curve is a geodesic if and only if its metric curvature is
zero at each of its points (see [3]). Blumenthal has investigated a
number of properties peculiar to ptolemaic metric spaces in [2]. It
is then significant to determine what metric spaces are ptolemaic. A
question which remains unsettled is whether a non-Riemannian G-space
(Busemann [4, p. 87]) can be locally ptolemaic. The result obtained
here concerning Hilbert geometries, together with several in the
author’s thesis lends support to the conjecture that such a space
does not exist.

Hilbert geometry is a generalization of the well-known Klein
model for hyperbolic geometry. Consider an arbitrary bounded
convex body C with nonempty interior D in euclidean space. If
x and ¥ be any two points in D, a distance function may be
defined as

h(x, y) = k |log R(xy, ab) |

where %k is a positive constant, ¢ and b are the points of intersection
of C with the affine line L,, determined by = and y, and R(zy, ab) is
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the usual (euclidean) cross-ratio. It can be proved that A(x,y) is a
metric, and moreover if C is either strictly convex or has the property
that all linear triples which it contains belong to the same hyperplane,
linearity under % coincides with linearity under the euclidean metrie,
Hence, the geodesics for & are the portions of affine lines contained
in D. The function % is then called a Hzulbert metric for D and
with this metrie, D is called a Hulbert geometry.

Let p be any point in D, With the euclidean metric understood,
let C’ be the reflection of C in p. KEach ray + from p will cut C
and C’ in unique points «, and «] respectively. Define U, as the set
of all points %, such that u,c» and

(1) 2 _ ;1
pa,  pv, D,

where zy denotes the euclidean metric. It is clear that U, is sym-
metric about p. With our former assumptions on C we can convince
ourselves that U, is strictly convex. Suppose rays », s, and ¢t with
origin p meet C in x, y, and z, and C’ in 2/, ¥/, and z’. If further,
u, v, and w are the intersections of those rays with U, we may use
(1) to deduce

R(pu, xa') = R(pv, yy') = R(pw, z2’) = —1.

Assume that v, is a point on the segment joining % and w, S,,, and
that s passes through »,. Finally, let ¥y, =sx S,, and %, = s x S,.,..
Now, ¢ = L,, X L,.,. is the center of a projectivity which maps « into
2z, w into w, and 2’ into 2’. It also maps z, u, and %’ into ¥,, »;, and

Y1, SO
R(pv, yy) = — 1
which is equivalent to

2 _ 1 . 1

o, Py UL

Since C and C’ are convex we have py, < py and py, < py’, with

strict inequality in at least one case. Hence
Yoy, + 1/py: > 1/py + 1/py’" = 2[pv .

Therefore, pv, < pv proving that U, is strictly convex.

As proved in [5], it follows that U, is the unit sphere of a
Minkowski metric m,(x, y) defined on D having the same geodesics as
h. Further,
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au=p M, Y)

In this sense a Hilbert metric is “locally” Minkowskian. The metric
m,(x,y) is called the associated local Minkowski metric of h(x,y) at

Pp.

1. Perpendicularity in Hilbert geometries. Suppose D is
metrized as a straight space by the metric d(x, y). We shall say that
a geodesic L, is perpendicular to another geodesic L, at pe L, N L,
whenever x e L, and y € L, implies

d(x, p) = d(z, y) .

This condition will be denoted L, | ,L,. The problem of existence
has been solved in [4, pp. 119-122]: Given a geodesic L, and a point
g not on it there exists a unique geodesic L, such that ge L, and
L, 1,L, at some point p, and if p is any point on L, and H is any
planar section of D containing L, (H is then a two-dimensional straight
space) then precisely one geodesic L, exists in H such that L, 1L,
at p. Since the Hilbert metric and the metrics m,(x, y) for pe D
metrize D as a straight space this statement applies to those metrics.

Perpendicularity is called symmetric if for any two geodesics L,
and L,, L, | ;L, implies L, | ;L,. The following theorem was proved
in [6]:

THEOREM 1. Perpendicularity 1is symmetric in a Hilbert
geometry if and only if it 1s hyperbolic.

Of significance to us is

THEOREM 2. At any point in D, perpendicularity under the
local Minkowskt metric coincides with perpendicularity under the
original Hilbert metric.

Proof. Let L, 1,L, at pe D and suppose x€ L, ye L, x =+ p,
and y # p. With p as origin, define the points 2, = Az and ¥, = Ay
for each real A, 0 < » <1, where \x denotes the usual scalar multi-
plication in euclidean space. Under the local Minkowski metric
m(x,y) at p, the triangles determined by the triples (p, x,y) and
(p, zx, yr) are similar and thus m(x, p)/m(z,, p) = m(z, y)/m(z., Y.).
Since h(x,, p) = h(x,, y,) for each » we have

h(», P) “m(z, p) < RACINYINE -m(x, y) .
m(z,, p) m(2, Ya)

But lim,, [A(@,p)/m(@x, )] = lim, s [R(2x, ¥2)/m(xy, ¥2)] = 1 so it fol-
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lows that m(x, p) < m(x, y) and therefore L, 1 ,, L, at p.

Conversely, suppose L, |, L, at p. Consider L; the geodesic
which passes through p, lies in the plane determined by L, and L,,
such that L] 1, L, at p. Then, from the preceding case, L; 1, L, at
p. Since the geodesic perpendicular to L, at p is unique in this plane,
L} = L,. Therefore L, 1, L, at p.

If a Hilbert geometry has the property that the local Minkowski
metric at each point is euclidean (that is, its unit sphere is an
ellipsoid) we shall say it is locally euclidean. We have an immediate
corollary, making use of Theorem 1:

COROLLARY 1. A locally euclidean Hilbert geometry is hyperbolic.

2. Ptolemaic metrics. In [9] Schoenberg has proved that a
ptolemaic normed linear space is an inner product space. We may
state this in the more pertinent form:

THEOREM 3. A Minkowski metric is euclidean if and only tif
1t s ptolemaic.

This enables us to prove
THEOREM 4. A locally ptolemaic Hilbert geometry is hyperbolic.

Proof. It will be shown that the given Hilbert metric Ai(x, y) =
xy is locally euclidean. The rest follows immediately from Corollary
1. Let p be any point in D and suppose m(x, y) = T¥ is the associated
local Minkowski metric at p. In view of Theorem 3 it suffices to
show that zy is ptolemaic. Let 2, y, 2z, and w be four points in D
and let N be the neighborhood about p in which the Hilbert metric
is ptolemaic., As before, with p as origin define z, = Mz, ¥, = A\,
2y = M2, W, = Mw for )\ a positive real number. For all sufficiently
small )\ the points z,, v,, 2\, and w, lie in N and we therefore have

TAYr-RAWy -+ ARy YA Wy = TAW YRy
or,

TaYa 2o Wy | TaWaYaRn | TaYa*RaWy
LAY Wa L\WaYaRn TaWne YN

(1) ST -
4 DB YaWa | W YnBa | A YaWn
Ya2aYaWr  Tr\W YRy LaWar YR

%
=l

Since % — \u = u, is a similarity mapping we have
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TrAYn ZaWy | TrxWx-Yan | TY-RW
TCaYa-ZaWr TA\Wx YaRy  PW-YR
AR\ YWy | LW~ YrRa Tz Yyw >1

AN YNWA Z\W)\ Y2\ TW-YZ

(3)
+

Taking the limit in (3) as A — 0 yields

XY -2W i TR Yw
TW.Yz xW Yz

v

L,

the desired inequality.
If 2, y, and z are any three points in D and m is the midpoint

of segment S,,, the euclidean formula for the median S,, is

(4) (wm)” = (xy)'/2 + (22)°/2 — (y2)"/4 .
It can be shown that for a hyperbolic metric, instead of (4), we have
(5) (wm)® = (2y)'/2 + (v2)'/2 — (y2)’/4

with equality only when z, y, and z are linear. Inequality (5) in

turn implies the ptolemaic inequality as we shall see. This fact may

then be used to derive the ptolemaic inequality in hyperbolic geometry.
We shall use (5) to derive the more general inequality

(5" (@m)” = May)® + (L —7) (@2)" — M1 = \) (w2)", 0=x=1,

for any point m on S,, with X = mz/yz. Induction will establish
(5’) for » a diadic rational p/2° where ¢ and v are nonnegative
integers and 0 < ¢ < 2*, The inequality is clear for the case v =1,
Assume it has been proved for all diadic rationals of the form p/2x,
£ <y, and let p/2” be given, excluding the cases px =0, ¢ = 2*, and
p even, as trivial. Then, there exist points y’ and 2’ on S,, such
that (¢ + 1)/2* = y'z/yz and (¢ — 1)/2* = #’z/yz. Since p is odd,
(¢t + 1)/2” and (pr — 1)/2* are diadic rationals of the form p//2¢ for
£ < v and the induction hypothesis implies

(xy')y = #; 1 (zy)*
4 (1 _ ﬁ‘; 1 >(9:z)"’ — ‘a; 1 <1 — #; 1 >(yz)2
B = 21 ()
2
e

Since £¢/2* = mz/yz, m is the midpoint of the segment S,. and (5)
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yields
(7) (xm)* = (zy')/2 + (@2')/2 — (Y'2')[4 .

Substituting yz/2*~* for ¥z’ and making use of (6), (7) becomes

@my = L Gy + (1= L)@y - L (1= L)oay

and induction carries. Then (5') is true for arbitrary real x, 0 < )\ = 1,

THEOREM 5. The ptolemaic inequality holds in any metric space
D in which the inequality (5) holds, provided the metric is complete
and convex.

Proof. The completeness and convexity of the metric guarantees
the existence of segments, Moreover, (5) implies the uniqueness of
the segment joining each pair of points. Let @, v, 2, and w be any
four points in D. We must prove that

(8) TYRW -+ XZYW = TW-YZ .

If the four points are not distinct, (8) follows immediately; hence we
set aside this case, as well as the case when the four points lie
on a segment. In a euclidean plane, the euclidean metric denoted pq, let
&', y', and 2z’ be the vertices of a triangle such that o'y’ = ay, o'z’ =
xz, and ¥z’ = yz, and let w’ be a point such that y'w = yw, w7 =
wz, and the segment S,.,. has at least one point m’ in common with
the line L,,. Point m’ is determined uniquely since the linearity of
2',y’, 2, and w would imply that =2,y,z, and w lie on a metric
segment (see [4] p. 29).

Case 1. m’' lies on S,,,,. Locate m in D such that m lies on
the metric segment joining y and z, and mz = m'z’. Put \ = mz/yz =
m?Z[y'Z. Applying (5),

(xm)* = Mxy)® + (1 — \) (x2)° — ML — N) (y2)
= M2y + (1 — 1) (@72) — ML —\) @2
= (@) .

Therefore xm = m’z’ and similarly, mw < m'w’. Thus,

w = am 4+ mw = m’ + mw = 2w .

Apply the ptolemaic inequality for the euclidean metric

W.z/w/ + L‘C’Z"y' 7 g X I.ylzl
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and we have
TY2W + x2-Yyw = x'w Yz = xw-yz .

Case 2. m' is exterior to S,,. We may assume that 2w’ < aw,
for otherwise we could derive (8) just as we did above. Since
«',y’,2, and w’ are not linear, at most one of the points z/, w’
lies on L,,. We may suppose that x' does not lie on L,,, for a
reversing of the roles of # and w leaves (8) unchanged. Similarly,
it may be assumed that y’ is between m’ and z’. Let K be the
semicircle with center at »’ and radius 'y’ which passes through
' and whose base lies on L,,. Further, let %’ be the endpoint
of K lying on the same side of %’ as 2/, and ¢’ the point where
the ray from w’ through ¥’ meets K. Since the sum of Zz'y'u/
and Zw'y'x’ is greater than or equal to =, v lies on, or in the
interior of, Za'y'w’ and therefore belongs to K’, the sub-arc of
K whose endpoints are ' and %’. Now, every point ¢ on K’ has
the property that #z’ < 2’2’. Consider the continuous function f(¢') =
tw, teK'. f)=2xw <azw and f)=vw =wy +yv =
wy + yx = xw, so there exists a point ¢’ on K’ such that ¢'#w’ = aw.
Applying the ptolemaic inequality to t/, ¥, 2/, and w’,

ty - Zw + T yw > tw Y7,
which gives us

TY-RW + XR-YW = 2Y-Rw + 'R -yw

— tlyl'zlw, + t’z"y'w, z t’w"

’

2= axw-yz .

<

Remark., This proof applies to G-spaces. Unfortunately, even in
G-spaces, it is not known whether (5) characterizes the ptolemaic
inequality. It is interesting to note in this connection that Blumenthal
has investigated a property he calls the euclidean four-point property
which is merely our (5') (or its equivalent (5) in complete convex
metric spaces) with equality prevailing (see [1]).

Theorem 5 then provides an easy proof of

THEOREM 6. Hyperbolic geometry is ptolemaic.

Proof. If xzy is a hyperbolic metric, we observe from the cosine
inequality (see [4, p. 268]) that if x, y, and z are the vertices of a
triangle and m is the midpoint of S,,, with A one of the angles at
m, then

(xy)* = (xm)* + (my)* — 2(xm) (my) cos A
(xz)* = (xm)* + (mz)* + 2(xm) (mz) cos A4 ,



300 DAVID C. KAY

and, since my = mz = yz/2, we have
(ey)" + (v2)" = 2(em)” + (y2)*/2 ,

which is (56). By Theorem 5 the metric is ptolemaic.
Theorems 4 and 6 combine to give

COROLLARY 2. A Hilbert geometry is locally ptolemaic if and
only tf it is hyperbolic.

3. Related inequalities. In a G-space the ptolemaic inequality
appears to be related to the “curvature” of the space. It can be
easily verified that spherical geometry (a space having positive
curvature) is mot ptolemaic. This illustrates the theorem in the
author’s thesis that a Riemannian space is locally ptolemaic if and
only if its curvature is nonpositive, which leads to the definition:
A metric space has nonpositive curvature if and only if the ptolemaic
inequality (8) holds locally. Other concepts of space curvature have
been proposed. In [4, p. 237] Busemann defines nonpositive curvature
as follows: If for each point there exists a neighborhood such that
given any triple of points (2, y, 2) in that neighborhood, with m, the
midpoint between z and y, and m, the midpoint between x and z,
the inequality

(9) 2m,m, = yz

holds, the space is said to have nonpositive curvature. In his thesis
the author proposes this definition (making use of inequality (5) above):
If for each point there exists a neighborhood such that if (z, y, 2) be
any triple of points in that neighborhood with m the midpoint between
y and z then

(10) (me) = (xy)'/2 + (¥2)"/2 — (y2)'/4

holds, the space is said to have nonpositive curvature. F. P, Pederson
[8] has investigated still a different concept of nonpositive curvature
and relates it to (9).

Relatively little is known concerning the various implications
which may exist among these concepts of curvature. The seemingly
stronger (10) is shown to imply (9) in [4, pp. 268-269]. Our Theorem
5 shows that (10) implies (8) (locally). In Riemannian spaces they are
each equivalent to nonpositive Riemannian curvature, but the situa-
tion is completely unsettled in Finsler geometry. In view of our
Corollary 2 and the theorem of P. Kelly and E. Strauss [7] that a
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Hilbert geometry has nonpositive curvature in the sense of (9) if
and only if it is hyperbolic, we may conclude (trivially) that the
conditions (8), (9), and (10) are equivalent in Hilbert geometries. It
would be of interest to determine further implications—if such exist—
among (8), (9), and (10) outside of Hilbert and Riemannian geometry.
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