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AN ELEMENTARY PROOF THAT HAAR
MEASURABLE ALMOST PERIODIC
FUNCTIONS ARE CONTINUOUS

HeENrRY W. DAVIS

It is known that a Haar measurable complex-vaiued (von
Neumann) almost periodic function on a locally compact T-
topological group is continuous., For by applying the Bohr-von
Neumann approximation theorem for almost periodic functions
and the fact that a Haar measurable representation into the
general linear group is necessarily continuous one may deduce
that such a function is the uniform limit of a sequence of
continuous functions. This approach, while straightforward,
has the disadvantage of depending on the very deep Bohr-
von Neumann approximation theorem. The latter result is
commonly proven through considerable usage of representation
theory. This paper presents an alternative prcef that Haar
measurability plus almost periodicity imply continuity. The
proof is elementary in the sense that it uses only the basic
definitions of almost periodic function theory and topology.
It does, however, depend on the standard tools of measure
theory.

Suppose G is a locally compact T,-topological group (= LC group).
Let I" denote the set of Borel subsets of (G, that is, the c-algebra
generated by the closed subsets of G. Let y be a left Haar measure
defined on 7" (cf. [2], pp. 184-215) and let /7 be the completion of I,
that is, ' = {BU N: BeI'y, NC N’, where N'e[' and #N’' = 0}. We
extend g to the o-algebra I by defining p(BU N) = p(B) for all
BUNel. p, so extended, is left-invariant and regular on I'. By
a [-measurable function on G we mean a function f from G to the
complex plane C such that f~(4)e I’ for all Borel sets AcC. We
are concerned with /'-measurable, rather I'-measurable, functions so
that in the real case, for example, we can deduce that Lebesgue
measurable, as well as Borel measurable, almost periodic functions
are continuous,

A set AcC @G is called bounded if A is compact. We shall let e
denote the identity of G and Q the set of all bounded open neighbor-
hoods of ¢ in G. It is convenient to use the following “density theorem”
whose proof is an exercise in Halmos’ Measure Theory ([1], 61.5;
Halmos’ “Borel” sets are different from ours but his suggested proof
works equally well in our setting.).

THEOREM. Let G be an LC group. For any UeQ,x¢G and

241



242 HENRY W. DAVIS
any bounded Ecl define

AU, E, ) — HED U}
w(Ux)
then d(U, E, ) converges in mean to the characteristic function ¥, as
U—e; that is, for any € > 0 there 1s some Ve Q such that for all
UecQ,UcCV, S{d(U, E, ) — yp(@) | dpe(x) < . In particular, d(U, E, )
converges in measure to Yy as U—e, Uc Q.

LEMMA. Let G be an LC group and f a I'-measurable almost
pertodic function on G. For any x,€G and any 0 > 0 define

T(f,0,m) ={wveG:|f() — flx)|=0}.

Then
ves (Uay)

that is, for any € > 0 there is a Ve Q such that for all Ue Q, UC V,

("‘{T(fy 57 wO) m UCU
1 (U,y)
If, for example, G is the additive group of real numbers, then

the lemma states that a Lebesgue measurable almost periodic function
is approximately continuous.

o e

Proof of the lemma. We first show that it suffices to prove the
lemma for the case x, =e. If x,eG, define f,(x) = f(xx,). Then
for arbitrary «,eG f,, satisfies the same hypotheses as f (it is /-
measurable because right translation of the power set of G by ux;*

preserves /' and also preserves the property of being p-null in 77).
Also

T(fop 0,€) = T(f, 0, x)a5"

SO

T (fop 0,00 NUY TS, 9, 2)o" N U}
w(U) 1(U)
_ MT(f, 0, %) NUxng}
w(Uzx,)

Thus if the lemma is true for any /-measurable almost periodic func-
tion when x, = ¢, then it is also true for arbitrary z,¢ G.
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We now suppose x, = e. Take 6 > 0. If the statement of the
lemma is false, then there is a real number ¢, 0 < ¢ < 1, such that
for every Ve Q there exists UcC V, Uec 2, satisfying

T (f, 6,e) N U}
1)

Take V*eQ and define T = T(f,d,e) N V*, so that T is a bounded
member of I'. Using the notation of the density theorem, it is the
case that for every Ve Q2 thereisa Ue 2,U C V, such that d(U, T,e) >¢
(Take Uc V N V*). In what follows we make frequent use of the last
statement in the density theorem,

Now p(T) =1t >0 and the family @ = {VeQ:d(V, T,e) >¢} isa
base at e. By the density theorem there exists V,e @ such that

> €.

r{re G d(Ve, T, @) — Yol2) | = €/2}) < /2.

Thus
Tg{eeG: | d(V, T, x) — yp(x)| = €/2} .
Take
meT —{xeG: |d(V, T,x) — y(x)| = ¢/2}.
Then

12 AL0 V) _ (Tor OV oy g,
(Vi) (Vo)

Since V,c @ we have

(Vo) =2 (TN Vo) > (Ve

S0

an
(Vo) = p(Ta™ N V) > (Vo1 — ¢/2) .

Consequently p(T N Tai®) >0 so ([1], 60.5) (TN Ta,) =t, > 0. As
@ is a base at e, there exists V,¢ @ such that

p{re G |d(Vy, TN Toy, ) — Yrare,(0) | = €/2}) < t/2.
Therefore,
I'nTa,g{weG: | d(V, TN Ta,®) — Apare(©) | = &/2} .
Take
a.e TN Ta, —{eeG: AV, TN Ta, ) — Yrnre,(®) | = &/2}

so that a,aire T and
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#(T N Ta, N Via,) — M(Taz7' N Taa:7' N V) >1—¢/2
V) n(Vs) ’

where V,e®. Thus we have the following situation:
(i) a,a,eGaareT.
i) 1= (Ta' N Taa;' N V)
(V)
We shall construct by induction a sequence {a;}3, G such that
a;a7'e T whenever 1 < j < 4. Suppose we are given

1=

>1 — ¢/2 for some Ved@.

iy a,a,--+,a, . €Gaa;'eT whenever 1 <j <t =m — 1.
Gy 1= p(Tayts 0 Taauia 0 - N Tan0atu N V) S &/2
(V)

for some Ved®. Now as Ve@ we have

wWV)yz i (TNV)> p(Vie

and
(V) =z p(Tazton - N Ta, 0,5 N V) Z (VYA — €/2) .
Thus
(TN Tayls N TaasNoeee N Tay,0amty) >0,
whence

mTnTan---nTay,)=1>0.
As @ is a base at ¢ there exists V’'e @ such that
pleeGld(V, TN Ta, N +++ N TCp_i,2) — Yrn.nre. (X)) = €/2}) < /2.

Take

Cm—1

aneTnNTa,N--NTa,_,
—{eeG AV, TN NTa,, ) — Yoaran-nra, (¥)] = €/2} .

Then a,a;'e T for all + =1,2,---,m —1 and

1=MTnTan--- N Ta,.NV'a,)

w(V'a,)
_ MTe;' N Taw,' N -+ N Ta,_a;' NV 1 ef2
(V") '
where V' e ®. Asa, ---,a, satisfy conditions analogous to (i)’ and (ii)’,

it follows that there exists a sequence {a;}7, C G such that a;a;j'e T
whenever 1 < j < 1.

Now as f is almost periodic, the sequence {f(a,»)}7, contains a
uniformly convergent sub-sequence, say {f(ajx)}. Then there exists
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N > 0 such that
sup | flaiw) — flajw)]| <o
whenever ¢ > j = N. But
sup | f(aiw) — f(as2) |
= sup | f(al(a)2) — F@)| = | @@ — £ 23,

because aj(a;)e T T(f,0,e). Thus our assumption of the falsity
of the lemma leads to a contradiction and the lemma is proven.

THEOREM. Let G be an LC group. If an almost periodic func-
tion on G is I'-measurable, then it is continuous.

Proof. The proof is indirect. Suppose that f:G—C is I-
measurable, almost periodic but not continuous. By translating f, if
necessary, we may suppose f is discontinuous at ¢. Then for some
0 >0 the set T(f,0,e) ={xeG:|f(x) — f(e)| =} intersects every
neighborhood of e. Take some V*eQ and let

S={xeG:|f(x) — fle)] < /2N V*
so that S is a bounded member of I’. By the previous lemma

lim mSnU) =1
g5 MU)

and, in particular, p¢(S) = r > 0. We make frequent use of the last
statement in the density theorem in the sequel. Also we let 4 denote
symmetric difference.

There is some U/ e Q such that

pleeG:|d(U, S, x) — xs(x) | = 1/100}) < r/2
for all UeQ such that UcU,. Choose U,e®, U, cU/, such that

| HSNU) o 99
) #(T) 100
There exists a, € S — {x e G: |d(U,, S, x) — %s(x)| = 1/100} and «, satisfies
(2) (S NUa) _ 1Sai* NT,) > 99 .
1(U.a,) () 100

Now V={reG: u(xU4U) < 1/100) (U} N V*ec Q2 (cf. [1], 61. A).
Take y, e V*N T(f,0,e) so that y7* ¢ Vand | f(y,) — f(e)| = 6. Then
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(3) iyt U, UU)21—06;1(U)

Combining (3) with (1) and (2) and using the fact that g is left
invariant gives

Sai* Ny U, U) = U
w(Sa Ny )>100/”( )= 1Ooﬂ(y )

SNyl
S Ny )>1OO/( ) = 100#(@/ U)
99
w(y'S Ny U, U.
mMyS Ny )>100/J( ) = 100#(?/ uy.

Thus #(Sai* N S Ny™S) > 0 whenee (S N Sa, N y'Sa,) = s > 0.
There exists U} e Q such that

r({oeG:|a@, 8 0 S 0 urSa, ©) ~ L@ 2 g} < 52

for all Ue 2, Uc U]. Choose U,e 2 such that U,c U! and

mSNU) _ 99
n(U,) 100 °
Then

SN Sa, N yiSa,
{% eq: ld(Uz’ S N Sa, Nyr'Say, x) — Asnsagnvyise (2 )[ = 100} = ¢

and we take a, belonging to this set. Then a, satisfies
/i(Sa;l N Sa’la/;l NU,) _ /"(S N Sa1 N Uzaz)
1(U) 1(U.a)

> (S N Sa, N yi'Sa, N U,a,) I
w(U,a,) 100

Also ya.07t e S. We thus have the following situation:
(1) a,0,eGy.eG;yaares.
(it) [f(y) — fle)| =z 0.
(iii) There exists Ue 2 such that
MSNU) 99 g ASa N Sees’nU) (99
w(U) 100 w(U) 100

Suppose the following situation is true for m = 2:

(1) @,y =y €G; Yy Yoy » <+, Y1 € G; and y,_,a,a7" € S for all
1=sj<k<m.

(i) | f(y:) — fle)| =é forall ¢ =1, .-, m — 1.
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(iii)’ There exists Ue 2 such that

S nU)
“uw(U) 100

and

(Say' N Sy’ 0 -+ 180, NT) o 99
w(U) 100 °

We shall show how to obtain a,.., ¥.€G such that a,, ---, a,., and
Yy, ***, Yn Satisfy conditions analogous to (i), (ii)’, (iii)’.

Exactly as was done in the paragraph leading up to equation (3)
we obtain a point y, € T(f, 0, ¢) such that

~1 = 22
Y= UNU) = 10OH(U)

Thus | f(y.) — f(¢)| = 0. Combining the above relation with the rela-
tions of (iii)’ and using the left invariance of p, we get

SNy l) > <100>;( ) = (wO)#(yTJU)

(Sa;' N Saaz! N -+ N Sa, 0, NynU) > ( >#(y;‘U)

100
1S Ny U) > (2 iy )
1006

(' Say N yR'Saa," N+ N yR'Sa,—ay' Ny U) > R)_o y(y;fU ).

Thus

(S N Sa, N Saay' N e N Sa,_ay
ymls m y;lsa;;,l ﬂ y;lsaqa/;l ﬂ °e. m yy—nlsa’m-—l(l;l) > O

so, letting
R=8n8a,nSa,n - NSa, Ny, SNyz'Sa,N +++ NyYn'St, ,
we have p¢(R) =t > 0. There exists We 2 such that

p({peG 1V, Boo) — 1) | 2 ) < 42

for all VcW,VeQ. Take U'e®, U’ ' W, such that

mSnu) 99
(U 100 °

Then there exists a,..€e B — {x e G: |d(U’, R, x) — yz(®)| = 1/100}. By
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definition of R we have y,a,..a;'€¢S for all £k =1,2, ..., m. Also

/'!(Sdm+l N Saa,t: N -+ N Sama’;LI nu’
)
_ (SN Sa 0 - 0184, N Utnsd) - g R, 99
T ( @) > 706

Thus a,, -+, dps, and y,, ---, ¥y, satisfy conditions analogous to (i),
(ii)’ and (iii)’. It follows by induction that there exist two sequences
{a;}ey, {y:}2 © G such that | f(y;) — f(e)| =0 for all ©=1,2, ... and
for any k& = 2 we have y,_aa;'e S for 1 <j < k.

Now as f is almost periodic, the sequence {f(xa,')}m-, contains a
uniformly convergent subsequence, say {f(xa,;)}r-,. Then there exists
N > 0 such that

Sup | f(wa, ) — (e, )| < 0/2
whenever k, >k, = N. But
sup | f(2a,)) — f(wa,) |
= Sup [ (@) — f(@an, Onp) | Z [ f WUmys) = FUmy i, 0 |
= {FWn, ) — FO} + {f(€) = [ W, 10n, 0} )} |
Z | [fUny ) = L@ = [£€) = [ WU, O, 8 ) ||
>0 —58/2=0/2

because each ;e T(f,0,e) and ym,-1an; am},€S. This contradiction
assures that f is continuous if it is /"-measurable and almost periodic.
The proof is completed.
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