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AN INTEGRAL INEQUALITY WITH APPLICATIONS
TO THE DIRICHLET PROBLEM

JAMES CALVERT

An existence theorem for the elliptic equation Δu — qu — f
can be based on minimization of the Dirichlet integral

D(u, u) = \ I Fu |2 + q \ u \2dx. The usual assumption that

q(x) ^ 0 is relaxed in this paper.
Actually the paper deals directly with the general second

order formally self-adjoint elliptic differential equation
Σi,kDz(a,ikDku) + qu =f where q{x) is positive and "not too
large" in a sense which will be made precise later. The
technique consists in showing that the quadratic form whose
Euler-Lagrange equation is the P.D.E. above is positive for
a sufficiently large class of functions.

Earlier inequalities of Beesack [1] and Benson [2] show that there

are positive functions q(x) for which I | Fu |2 — q\u \2dx ^ 0 for functions

u which vanish on the boundary of the domain. D. C. Benson suggested

to the author that this inequality might lead to existence theorems

for Δu + qu — / .

Let x — (xl9 x2, xn) e Rn. Let D be an open domain in Rn which
may be unbounded unless the contrary is assumed. Let CCO(D) denote
the set of all infinitely differentiable complex-valued functions and
C™{D) denote the subset of C°°(D) of functions with compact support

Σ i DiU |2 + I u \2dx and let C°°*(D) be
D i=l

the subset of C~(D) of functions with | | t t | | i < °o. Let H^D) be the
Sobolev space which is the completion of C°°*(D) under | |w| |i. For a
function q of the special type encountered in §1, let H?{D) be the
Sobolev space which is the completion of C°°*(D) under the norm

l"llί = ( t
Let Hλ and H? be the completions of C~{D) with respect to H^
\\u\\q. The reader who is not familiar with the Sobolev spaces can
find a discussion of their calculus in Nirenberg [5].

1* An integral inequality*

THEOREM 1.1. Let D be smooth enough to apply Gauss9 Theorem.
Let aik{x) be hermitian positive definite, aik e C^D), and let f, f2, fn

be continuously differentiable complex valued functions of x, for all
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xeD. Then

\ Σ ^DiUD.n + (aikfjk + Dk(Re atkft)) \ u \2dx
JD i,k=i

= \. Σ ^ e (aίkfi) I w |2^/,rfs, where vk
JD i,k=--l

is the kth component of the normal, u e Cι(D), and the integral on
the right is assumed to exist. In the case of unbounded D, we will

understand lim \ Σ Re (aikfi) | u \2v,cds = 0 for ΣR a sphere of radius

R. Equality holds if and only if D{u = uf, for every i.

Proof. From 2 aik(Dtu — uf)(Dkΰ — ΰfk) ^ 0, obtain

Σ aikDiUDku + Γttifc/i/fc + — Dk(aikfi + aikfi)j \u\2

( 1 ) ^ Σ aik(fuDkΰ + fkΰDiU) + ^- A(ααΛ + άίΛΛ) | w ί2

= Σ aikfiUDkΰ + — Dk(aikfi) \u\2 + aikfiΰDku + — Dk(aikfi) \u\2 .

Where the last line was obtained by interchanging the order of sum-
mation and using the symmetry of aik.

Now obtain a new inequality from (1) by taking conjugates of
both sides and interchanging the order of summation in the first two
terms. Add this new inequality to (1) and obtain

+ [aikffk + Dk(Re aίkf)] \ u

Now integrate both sides and use Gauss' Theorem to obtain the desired
result.

DEFINITION 1.1. We will reserve the notation q(x) for a positive
function of the form q{x) = —J^aikffk + Dk(Reaikf).

COROLLARY. // D is any open set in Rn and aίk(x) are uniformly

bounded in D, then \ Σ dikDiUDkΰ — q \ u \2dx ̂  0, for every u e Hi
JD i,k

and equality holds if and only if D{VL = ufi9 for every ί, a.e.

Proof. Let us first establish the inequality for any ueC~(D).
Let K denote the support of u and Ω denote a sphere containing K.

Let ueC~(Ω) such that ^ ^ I Q on Ω — D a n ( * l e t ®» ̂ ' ^ ^ e c o n t ί n u -
ously differentiate extensions of uffi9q to Ω. Then
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Σ — q\u \2dx = \ Σ oίikDi

^ (. ΣReία

— q\u \2dx

ai'Ms = o .

Now let I aik(x) | ^ M for every i,k,xe D. For any w e ^ i 9 , choose a

sequence Mm e Co°° such t h a t || u — um \\q —^ 0.

Then

and

Σ
Z? r

\ Q
J2)

Q I ̂ m Γ ^

and we have established that

\ Σ a<ikDiUmDkΰm — q\um \2dx ^ 0 , for every m.

We need only show that

I aikDiUmDkΰmdx - ^ \ aikDiUDkΰdx

which follows from

I I aik I I DiUmDkΰm — OiUOku I dx
JD

^ M\ (I D,um I I Dk(ΰm -ΰ)\ + \Dkΰ\-\ Di(um - u) \)dx
JD

G M I Di(um - u)
\l/2 m

2dx) > 0 .

After proving three existence theorems, we will give some examples
for choices for q(x).

2. Existence theorems*

THEOREM 2.1. Let q(x) be a function of the special form of
definition 1.1 and let p(x) be a continuously differentiable function
such that 0 < p(x) ^ (1 — ε)q(x), where ε > 0 and fixed. Let

q-ι\f\2dx<
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g G Hi and let

An — Σ Di(aikDku) + pu be a
i,k

uniformly elliptic operator. That is, aik is hermitian and there
exist positive constants M and λ such that \ aik(x) | ^ M and

Σ f112 ^ Σ

/or αwi/ (ίi, f2, ξn).
Then the Dirichlet problem

Au — f in D

u — a on D

has a weak solution and any two weak solutions differ only on a set
of measure zero.

Proof. We must show that there is a function u e H? such that

u — g eH? and (u, A*φ) = (/, φ) for every φ e Co°°. Here A* denotes

the formal adjoint of A (actually A — A* on the domain of A).

Equivalently, we can set u0 = u — g and consider the problem of

finding uQ e H? such that (u0, A*φ) = (/, φ) - (g, A*φ).
Let

B(u, v) = \ Σ aikDiUDkv — puv dx
} D %,k

f _ _ _
= \ Σ UikDjcUDiV — puv dx

JD i,k

= — \ Σi^Dk(aikDiV) + puv dx
J D %,k

= —{u, A*v), for every v e C~(D) .

We will show that there exist Cl9 C2 > 0 such that

\B(u,v)\^C1\\u\\q\\v\\q

and

B(u, u)^C2\\u\\2

q, f o r e v e r y u,ve H? .

For, having shown this, we can apply the Lax-Milgram Theorem which

guarantees that any bounded linear functional F(φ) on the Hubert

space H? can be represented as F(φ) = B(u0, φ) for some u0 e Hi.

Take F(φ) = -JfTφ) - B(g, φ), then
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l/2 l/2

+C1\\φ\

^ const \\φ\

So B(uQ, φ) — — (/, φ) — B(g, φ) which was to be shown.
To see that B(u, u) is positive, consider

B ( u , u) = \ Σ a i k D i U D k ΰ — p \ u \2dx
JD i,k

^ \ Σ dίkDiUDkΰ — q \ u \2dx + ε l q \ u \2dx .
JDi,k JD

By the corollary to Theorem 1.1, both integrals are positive and,
therefore,

B(u, u) Ξ> ε l q\u \2dx a n d
JD

B(u, u) ^ i X aikDiUDkΰ — q\u \2dx .

+ — ) f i ( w , U) ^ j Σ aikDiUDku + q\u \2dx

Then

ί Σ I Γ + q I

with C = min (1, λ) .

The positivity of B(u, u) implies

B(u, v) |2 ^ β(u, u) B(v, v) so that we need only show that

B ( u , u) ^ c o n s t \\u\\\ t o s e e t h a t | B ( u , v)\ ^ C x || u \\q \\ v \\q

B ( u , u) ^ M \ Σ I D ό u D k ΰ \ + p \ u \2dx
J Σ

D i,k

Di,k 2
+\Dkΰ\2) + p\u\2dx

^ Mn\ Σ I DiU I2 + p I u \2dx = Mn\\u \\2

P ^ Mn\\u\

JD i

To obtain the uniqueness result, let Au — 0, u e H?, then

0 = —(u, Au) = B(u, u) ^ C21| u \\l :. u = 0 a.e.

THEOREM 2.2. Suppose that D is bounded and D is smooth enough
for integration by parts, that (aίk) is real symmetric positive definite,
that aik G C\D), and that \ aik(x) \ ^ M, for every ί,j = l, ,n and
xeD. Let q(x) = -^^{a^fifu + Dk{aikfi)) be such that qeC2(D)
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and the system

— ufi
has only the trivial solution.u = 0 on D

Let Au = Σ*,ft Di(aikDku) + qu.

rτiΊ _ . . , \Au — 0 in D

lhen the Dirichlet problem ]
( u = g on D

has a unique solution.

Proof. We use a result of Browder [4] which says that under
the assumptions above uniqueness implies existence. Thus we need
only show that if u is such that Au — 0 and u ~ 0 on Z), then u = 0.
But that is immediate since

B(u, u) = \ Σ aiuDiUDjβ — q\u \2dx
)D i,k

= —(u, Au) = 0 .

By Theorem 1.1, B(u, u) = 0 only if D{n = ufi9 By the assumption,
u = 0.

It will be seen in § 3 that many functions q(x) have the required
uniqueness property.

THEOREM 2.3. Let q(x) = - Σ * l/< I2 + A(Re/ 4) so that

[ |2 - q I w | 2 ώ ^ 0 ,Σ
/or every u e H?(D). Suppose that q e C\D) and 0 < m <£ g(a ) ^ ikf
/or β̂ er̂ / x e D. Suppose that (aik) is hermitian and

λ Σ I ξi I2 Σ aik(x)ξiξk
ί i

for all x e D, all ζ and some fixed λ > 0. Suppose that aik e C2(D),
bi e Cι{D) and aik, bi are bounded in D. Let

Eu = Σ Di(aikDku) + Σ biDiU + (p(x) - ^Γ)u

where 0 < p(x) ^ (λ — μ — e)q(x) for x e D, μ and ε are any fixed
positive numbers with μ + ε < λ, and

jyc ^- — max 2-k
μ xeδ i

Then the Dirichlet problem
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(Eu = / in D

u — g on ί)

has a weak solution and any two weak solutions differ only on a set
of measure zero. [Note: In the usual theorem of this sort, one
requires 3ίΓ ^ (1/λ) max^s [Σ; M + λ£>] s o that p(x) — J3Γ is necessarily
negative. For example, see Hell wig [5].]

Proof.
Let

B(u, v) = 1 X aikDiUDkv - Σ bkvDku - (p - ^Γ)uv dx
JDi,k k

bhv) + (p -
JD i,k

= -(u,E*v), for

we will show

\B(u,v)\ ^ CxII^IUIvHx

\B(u,u)\ ^ C2\\u\\l

and the result follow from the Lax-Milgram Theorem by the argument
in the proof of Theorem 2.1.

Recall μ from the statement and use the inequality derived from
[(μ/2Y'2a - (μ/2yll2βγ ^ 0 to obtain for each k,

Sum on k,

I bkuDku \ ^ — I bkΰ i2 + - ^
μ 4

1_

Dku

I B ( u , u ) \ ^
D ί,k

( X

n&u - (p - JT) I u \2dx

I Dku |2 - (λ - μ - ε)q | M |2 +

\
JD

bkΰDku dx

|

|2 - i^ Σ i Dku \2dx
4 A

^ ( λ - μ ) ί Σ I D k u \2 - q \ u fdx + ε[ q \ u \2dx .
JD k JD

Since both integrals are positive,
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I B(u, u) I ̂  (λ - μ)\ Σ I Dku |2 - q \ u \2dx
JD k

\B(u, u)\ ^ ε\ q\u \2dx .
JD

Let δ = 2(λ - μ/ε) > 0, then

B(u, u) I ^ λ — μ

1 + d

I B(u, v) I £ const .^ g | Dtu | | Dkv | + Σ \v I I DA« | +

I A-v I1
l/2

+ Σ ( \ ι«ι
k \JD

^ const. X || ί<
L i , A;

^ const. || w ||i

3* Examples* Let

for real fi9 aik.

3.1. Let

1/2

Hi + Σ I I v Hi II w Hi + II«Ik
k

Hi!
J

Dh(aihfi) ,

1 < s < n

Then

and the inequality is

(0 i = s + 1,

4 ί=i .τ2

( Z \ k \ ± \ \ u \ d x ^ 0 .
JD k 4 ί=i a?2

Notice that this generalizes the well-known inequality

Σ\Dku\2dx, ueHl9
D k

where μ = min^^^ maxx.€D | a?* |.
In particular for s — 1, Theorem 2.1 solves the Dirichlet problem

for z/i6 + p ^ ) ^ = 0 where 0 < p{xx) ̂  ((1 — ε)/Ax\) and the plane xλ = 0
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is not in D. This differential equation has an application in Generalized
Axially Symmetric Potential Theory where solutions of

dx \ dx / dy \ dy

are sought |(see 17]). If we let u = y-1'2^-2^, we obtain

VχχlVyy - (n-2)(n-A) v_^Q

4y2

and 0 < (~(n - 2)(n - 4)/4) ^ 1/4 when 2 < n < 4.
It sometimes happens that equations of mixed type, that is equa-

tions which are elliptic in one part of the plane and hyperbolic in the
complementary part can be transformed into equations which are elliptic
but which have singular coefficients. The Tricomi equation yuxx +
Uyy = 0 is of this sort. If we let z = 2βym we obtain uxx + uzy +
(l/3z)ug = 0. Now let v — zll6u and obtain

Since 5/36 < 1/4, Theorem 2.1 guarantees a solution to the Dirichlet
problem in any domain for which z Φ 0. In [3], Bergman uses (*) to
study the Tricomi equation by means of his technique of integral
operators. His technique is, of course, limited to two dimensions, but
there are analogues of (*) in any dimension.

3.2O

s - 2 x,
9 s

V <r2

£ i ^ s

1 ίg s ^ n .
0 s < i < n

Then

In particular, for s = n = 3, q(x) = (l/4r2) where r = (XLi «i)1/2> and

!2 - - L - ίt d c ^ - 1
4?"2 2

Notice that the right hand side is positive whenever D is the exterior
of a region which is starshaped with respect to the origin.
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Theorem 1.1 solves the Dirichlet problem for Au + ((1/4 — ε)jτ2)u = 0.
This example shows the value of having ε > 0. If we take D to be
the exterior of the unit circle, the function u — r~ll2~v~ solves Au +
(1/4 — ε/r2)u — 0 with boundary values u = 1 and

G
For ε = 0, the expected solution of Au + (l/4r2)^ — 0 is u = r~1/2, but
| |r"1 / 2 | | f = oo, It is not even clear that the solution is unique.

3.3. L e t aik = δik, f=(fu---, fn) = ar*r w h e r e r = (xu x2, . . . x n ) .
Then

\ Σ I Dku |2 + [α2r2 ί + 2 - a(n + ΐ)r*] | 6̂ \2dx > 0

o

for every ueH?.

3.4. Let au = x\, aik = 0 for ΐ ^ Jc, ft = - (1/20;,). Then g(a ) = (tι/4)
and Theorem 2.1 applies to Σ*=i Dk(x2

kDku) + au = f where 0 < a < n/4.

3.5. It is possible to derive from Theorem 1.1 Rayleigh's charac-
terization of the first eigenvalue of χ ί f Λ Di(aikDku) + Xqu = 0, u = 0
on Z), where g > 0 and continuous on 5 and JD is bounded. Let λ :

be the first eigenvalue and ux its eigenfunction. Then uλ Φ 0 in D
and we may set /< = (Z?^iM) Then

+ A(αί4Λ) = Σ A (

ik

Let u G C~(D) and i ί be the support of u. Then

\ Σ dikDiuDku — Xxqu2dx ^ 0

since /,u2 e C\k). Since all the functions are bounded this implies that

\ Σ diicDiUDkU — Xλqu2dx ^ 0 , for every u 6 C0°°(J5) .

Since this is the only conclusion of Theorem 1.1 used in the corollary,

we have this same inequality valid for all ueH?(D). That is,

\ Σ
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with equality if and only if Ό{u = /& = (Dtujuju if and only if
u — kuλ.

One can employ the technique of this example to obtain inequalities
whenever a suitable solution of the string equation is known.
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