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TENSOR PRODUCTS OF GROUP ALGEBRAS

BERNARD R. GELBAUM

Let G, H, K be locally compact abelian groups where K
is noncompact and both the quotient G/N¢ where N¢ is a
compact (normal) subgroup and the quotient H/N# where NZ
is a compact (normal)’ subgroup. Then in a natural fashion
the group algebras L,(G) and L;(H) are modules over L,(K)
and

Ly(G) ®LI(K) L(H)= L(K) .

In [2, 3, 4, 5] there are discussions of tensor products of Banach
spaces and Banach algebras over the field € of complex numbers and
over general Banach algebras. We note the following results to be
found in these papers:

(i) If A, B, C are commutative Banach algebras and if A and B
are bimodules over C (where |[ca|| < |lc|l|lall,|leb]] < |lcll]|bl],ac A,
be B, ce C) then the space M, of maximal ideals of D = A ®,B may
be identified with a subset of M, x M, as follows:

My = {(My, Mp) : Mye WMy, Mye My, p(M,) = v(Myp) # null map} .

(Here p« and v are continuous mappings of M, and M, into IME = the
maximal ideal space of C with the null map adjoined. These maps
are defined as follows: If ac A,be B,ce C then

o™ (M ((My)) = ca”(M,)
6" (Mp)e"(v(Mp)) = cb™(M5) .
Finally

cla @ b) (M, M) = " (pt(M))a"(M)b"(Mp)
= ¢ (W(Mp))a~(M)b"(My) .

[3])

(ii) If G, H, K are locally compact abelian groups and if 64, K— G,
6. K— H are continuous homomorphisms with closed images, then
L,(G) and L,(H) are L,(K)-bimodules according to the formulas:

ca(§) = SKG(E = 040)e(Q)dE, a € Ly(G), ce Ly(K) .
cb(n) = be(v = 0x(0)e(Q)dC, be Li(H), ce L(K) .

Furthermore the mappings p and v of (i) are simply the dual mappings
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0;: G — K~
0. H>— K~
of the character groups in question, [3, 4]. Finally,
Li(G) @1,x) Ln(H) = Ly(®)
where
® = G x H/(64 x 65) diagonal (K x K) and 6,(0) = 0,(—0) .

Loosely phrased, this says that the tensor product of group alge-
bras is the group algebra of the tensor product of the groups.

The above results lead to the study of a similar (somewhat dual)
situation described as follows:

Let G, H, K be locally compact abelian groups and let 6°: G — K,
0%. H— K be continuous open homomorphisms with closed images. In
what circumstances can L.,(G) and L,(H) be made L,(K)-bimodules
relative to the mappings 6% and 6%? When these circumstances obtain,
what is M,, where D = L\(G) @.,x) L:(H)? Is there a group & such
that D = L,(®)?

We shall give answers to these questions in the following sections.

2. Examples. (i) Let G and K be compact abelian groups and
let 6%: G — K be epic. Then define L,(G) as an L,(K)-bimodule by:

catd) = | até — e)ee)ds,

where ac L,(G),ce L(K) and &(§) = ¢(69(8)), &) = c(6%(n)). (The
above is defined first for continuous functions and then for arbitrary
integrable functions by standard extension techniques.) Then

lleall = [[exall = [ €]l llal]l.

However, the map F': c——»S ¢(&,)d&, is a translation-invariant integral
@

on L,(K). Thus we may and do assume
|, f@de, = | e@ac
q K

and we conclude: [[call < ||c]||la].
(ii) Let G = K = R = the set of real numbers. Let 69(&) = 2¢&.

Then for ce Ly(K) and a e Ly(G) let

ca(d) = | "ate — e)eczends,

In this case ||ca|| < 3ll¢c|l||a]l.
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(iii) If 6¢ is not epic F': L(K)— & as defined in (i) need not be

an invariant integral. For example, if G = {0} and if K is an arbitrary
nontrivial compact abelian group, then, for ¢ continuous,

Flo) = gg@)ds = ¢(0) .

If {,e K and if ¢,({) = ¢({ + ), then
F(Co) = co(O) = C(CO) .

Thus, choosing ¢ continuous and such that ¢(0) #= ¢(¢,) we find F is
not translation-invariant.

(iv) If G is mot compact, if K is compact and even if #¢ is epic,
then the action of L,(K) on L,(G) is not definable in the manner con-
sidered. Indeed, if ¢({) =1, and if a e L,(G) we see

ca®) = | ale — &)o()ds,
= | o,
q
since ¢(&) = c(0%(¢,)) = 1. If, as we may, we choose a so that
[ @ =0,
then ca ¢ L,(G).
REMARK. Even if both G and K are not compact but if F' is an

invariant integral, the kernel of 6¢ is compact. To prove this we
assume, as we may, that Haar measures are adjusted so that

[ c@at = e@ds = | atpan.

Furthermore, we may assume Haar measures on K and on ker (6¢) = N¢
have been adjusted so that for a e L,(G)

Sea(é)ds = SK(SNGa(E + p)dp)dc ,
where { is the variable of integration on K = G/N¢, Since
[, a6 + oo

is constant on cosets of N¢, it may be regarded as a function of C.
Then we find for any nontrivial nonnegative ¢ in L,(K):



244 BERNARD R. GELBAUM

| 2@z = ([ e+ ondo)ic
— SKC(C)CZC- SNGld,o

since p e ker 0. Hence N¢ must be compact, since otherwise

a contradiction.

3. The main formula. In view of the conclusions of the
preceding section, we posit the following situation:
(i) G, H, K are locally compact abelian groups.
(i) 6% G— K, 67: H— K are continuous open epimorphisms.
(iii) L.(G) and L,(H) are bimodules over L,(K) according to the actions:

ca() = C*a
cb(n) = ¢xb

where a e L,(G),be (H) and ce L,(K). (Recall that
(&) = ¢(6%(8)), €(n) = c(6%(n)) .)

(iv) Haar measures are adjusted so that the functionals
Fyie— | c@@)ae = | @z,
Fyio—{ c@may = | ey

are translation-invariant integrals.
The argument used in the remark following (iv) of §2 shows:
If F is an invariant integral then

[Jz@ s + | et ia <+

if and only if N¢ and N¥ are compact.

In effect, we assume G, H, K are locally compact abelian groups
and K is a noncompact quotient of both G and H by compact (normal)
subgroups N¢ and NZ,

Thus there is a wealth of concrete examples of the type that
concerns us, e.g., G =K x N¢ H= K x N¥ where N¢ and NZ are
compact, K is locally compact and not compact and all groups are
abelian.

In these circumstances
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D = L(G) @ryx Lu(H) = Ly(K) .

The formula is the conclusion of a sequence of lemmas. We re-
call that an interpretation of the results quoted in §1 may be given
as follows:

(a) M = G
%Llr‘ﬂ) =H"
mz,l(x) =K".

(b) There are mappings
p:G™— K~ U {null map}
yv: H” — K~ U {null map}

and
My, = {(a, B): e G", Be H, (@) = v(B) # null map} .
Furthermore

ca”(a) = a” ()" (@), a e Ly(G), ce Ly(K) ,
cb™(B) = b (B)c"(¥(B)), be Ly(H), ce Li(K) ,
(@) = (), €7(B) = " (v(B)) .
Although we need never consider a pair («, 8) such that p(a) =
y(8) = the null map sending L,(K) into 0, we shall have occasion to

consider p(«) for all a and y(B) for all 8. Thus we shall interpret
¢ (n(@) and ¢"(v(B)) to be 0 if p(a) = v(B) = the null map, even

N6

though, since ¢ is a function on K, “¢"(null map)’’ is not defined.

LEemmA 3.1. The map L(K)3c(l) — &(&) = c(0%¢)) € Ly(G) is an
isometric monomorphism. The image L(K)¢ of this map is a closed
ideal in L(G). Finally, p (null map) = h(L(K)%) = hull (L(K)%).

Proof. The algebraic and metric properties of the mapping are
clear. To show L,(K)? is an ideal (as the image of a complete space
under an isometry L,(K)¢ is closed) we consider ¢ in L(K) and a in
L(G). Then

axt = | ale - e)e@(E)as,
= | ateewe(c - ena,
If o(0) = | a@e@ — 09e)dz, then o is in L(K) and & = axd.
G
Finally, if p(a) = (null map), then ¢“(u(a)) =0 for all ¢ in L(K).
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However, for a¢ in L(K) and such that a™(«) # 0,

ca (@) = a” (@ (@) = aA(a)SGa@F, e
or
0= & (@) = & (@) .

Thus a € h(L,(K)%), i.e., ¢ (null map) C h(L(K)%).

Conversely, if ae h(L,(K)%), then ¢7(a) =0 for all ¢ in Ly(K).
The above formulas show c¢"(¢(«)) =0 for all ¢ in L,(K), whence
p(a) = (null map) and we conclude g ~*(null map) = A(L,(K)%).

Let 6¢, 07 be the duals of the maps 6%, 6%. Thus, e.g., (£, 8%(v)) =
(6°(8),v) forall ye K. If S isasetin G, let S* be the ‘‘annihilator”
of S, i.e., the set of @ in G such that (s,a) =1 for all se S. We
prove

LEMMA 3.2. (a) N = §°K;
(b) G = N° U h(L(K)?), § = N°* 0 W(L(K)") ;
(e) p: N9+ — K is an isomophism [6, p. 103].

Proof. (a) If £e N% then 6%¢) = identity and (8°(¢),~v) =1 for
all ye K. Thus #%K) c N°*. If ae N, then for all ¢ N°, (¢, @) = 1.
If a¢d¥K), then, since #%K) is closed, there is a & such that

(G @) # 1, (&, 0UK)) = 1 = (6°&), K), i.e., &eNC,

a contradiction. Thus §%(K) = N, u(N°) = p@4K)) = K.
(b) and (¢) If a,¢ N° then p(a,) = (null map). For if a,¢ N,
then «, may be regarded as a nontrivial character of the compact

group N°. Thus | (¢ + 0, a)dp = | (5, a)o, a)dp = 0. Hence if
ce L,(K) then

() = | (0N ards

SK(SNGC(QG(S + N + o, ao)dp>d§

[ eo(] &+ o o)z =o.

I

Thus p¢(a,) = (null map), and @\N ¢ < h(L(K)%). On the other hand
if a is in A(L(K)% Athen a is not in N¢., Otherwise, & may be
viewed as some v in K and thus for ¢ in L,(K) we have
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5@ = 0 = | (0N Das
= ([ _et0c + onE+ o, do)a
- | co@mac] 1dp.

Hence ¢"(v) = 0 for all ¢ in L,(K), a contradiction. Thus @/N 6L =
h(L,(K)% and we conclude the truth of (b).
Next, if §%(v) = « then for ¢ in LK) and a in L,(G)
ca™(@) = a(@)| o(0°(E))E TN
= a™ (@) () .

Hence, ¢ (f(@)) = ¢"(v) and p(a) = v = p0%).

Clearly

1OCn°(r) = 0% (rm)) = 1
= ph°(r) ph°(,) .

Thus /¢ is an epimorphism of #“(K)~ onto K~ and pf° is the identity.
It follows that ¢ is one-to-one on #%K) and furthermore that &%
is the identity on A9K : 87 p(@%(v)) = 69().

Combining our results to this point we see that

M, =diag(K~" X K)= K™ .

It follows that K is a reasonable candidate for the group & such that
D = L(®). Indeed, if ® is such a group then & = IM,. Since
M, = K™, we conclude & = K.

We shall now define a map 7': D — L,(K). As usual T is defined on

§ = Fru(Li@), L(H)
= {F1£1 146) % L(H) — L(K), | £
= 3 1@ Bl el 1B < o=, £0,b) = fia, 0) + 0}

[2, 3]. Thus if ¢(a, b) is the function taking the value ¢ at (a, d)
we set

T(c(a, b)) = SNgca(E + p)dp*SNHb(n + o)do

where NZ = ker (%). We note that each of the integrals above is a
function on K and hence so is the indicated convolution. It is a
simple matter to verify that when 7T is extended by linearity it is a
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bounded epimorphism of the algebra % onto L,(K) and that T annihi-
lates the reducing ideal I, modulo which the algebra ¥ is D. (The

surjectivity of T follows from the fact that the integrals S L= T
¥
and S L= T, are epimorphisms, from a simple application of approx-
¥
imate identities and from P. J. Cohen’s factorization theorem [1, 3, 4].)

We show now for T, which may be regarded as a mapping of D
onto L,(K),

LEmMmA 3.8. T s an isomorphism if and only if D is semisimple.
Proof. Clearly, if T is an isomorphism then D is semisimple.

Conversely, if D is semisimple and if 7T(z) =0, where z =
Seacla, ®0b,) [2, 3], then for any v in K™, T7(2)(v) = 0. Thus

"8

P

@) = 5 Tolena)) Talb)) ()

21
e

o

- ;mT( n)(v)TH(b () =

n

1
-

However,
To@0) = | Tho)QT 7d
J,.(1 ot + ordo )T a

|,(1, .ot + 0+ 0, 7do)a
a” ()

where a = 0%). After similar arguments about 7, we find

ol

Il

Il

I

T @) = 3, 0@ @b (6)

where B = 0%(v). In other words T (z)(v) = 2 («t, 8) where p(a) =
7(B) and («, B) corresponds to an element of IMM,. Since T (z)(v) =0
for all v, we find 2"(a, B) = 0 for all («, B) corresponding to elements
of M,. The semisimplicity assumption now shows z = 0 and hence
that T is an isomorphism.

We now conclude by proving

LEMMA 3.4. D s semisimple.

Proof. Let z belong to the radical of D. As in [3, 4] we may
assume that z is of the form 3,7, ¢,(a, ® b,) where, for fixed compact
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sets U, V, W in G*, H", K~ and for all n, support a,(«) c U, support
b,(B) c V, and support ¢, (v) < W. Furthermore, we may assume that
each ¢, is of the form ¢, *¢,,*c,; and thus in effect that

g = le cnl(cnzan ® Onabn)
n=

where support ¢ (v) < W.

Since L,(K)¢ is an ideal in L,(G) and since there is a correspond-
ing statement for L,(K)Z, we conclude that there are elements d,, d,;
in Ly(K) such that d,.(8) = ¢,u0.(8), du()) = C.ba(p).

Furthermore, d(a) = d..(14(q)), d(B) = d..(»(8)), and d(v) # 0,
or dy(v) = 0 implies dpy(10°(7)) = dx(B%)) + 0, ete., i.e., that vep
(support d3), ete. Thus there is a fixed compact set Y containing
the supports of all ¢, ¢o, ¢y Aoy dos, Ay Hence there is a fixed ¢ in
L,(K) such that ¢™~(v) =1 on Y, support ¢"(v) is compact and

0=c(M=1.

For this ¢ it is true that ¢,; = ¢,;%¢,d,; = d,;*¢,J =1,2,8, Thus
we find

?

Il
M

cn(an ® bn) = ; cnl(cn2an ® cnsbn)

1

3
1l

I
M

cnl(dnz ® dns) = i Cnl(dnzc ® dnSC)

3
[
-

Il
e

cnldnzdm)(c ® C) .
However, for all v in K*
o~
Furthermore
4u®) = | @u(@en(t — 0°(@de
4@ = | bulen(c — 07 .
Thus
dan) = | | au@ent — 0T Mdzde

- SGLM@cw(commdadc
= a3 (65(M))ew()

and similarly d(v) = b.(6%(7))ens(y). We see then that
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EnMAn(Mdn(r) = a)em(Man @) eab(@=(7))

and since yﬁG(v) = vﬁA”(v) = v we conclude that

S\ alnaamasm) = 2 (@), 07

which is zero as a consequence of our assumption. Thus z =0 and
the semisimplicity of D is established.
Hence, in the context indicated above and suggested by the diagram

G H
N/
00\“/01{

K

there obtains the formula

L(®) @uym Li(H) = Ly(K) .
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