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ON CONSTRUCTING DISTRIBUTION FUNCTIONS;
A BOUNDED DENUMERABLE SPECTRUM
WITH » LIMIT POINTS

DANIEL P. MAKI

If {a,}s and {b,})i" are real sequences with the b,’s all
positive, then a theorem of Favard states that there exists a
bounded increasing function < (xr) which is a distribution
function for the polynomial set {¢,}=, which is recursively
defined as follows: ¢_,(x) = 0, ¢y(x) = 1,

(1-A)  Purs(®@) = (& — An)Pa(X) — bugns(®) (0= 0).

This study considers the problem of constructing -(x) for
certain classes of sequences {a.}; and {b,};. The sequences
considered all lead to functions ++(x) which have a bounded
denumerable spectrum with » limit points (1 = n < ).

2. Notation, preliminaries, and summary. The following
notational conventions will be maintained throughout this paper:

(1) {a,)7 is a sequence of real numbers.

(2) {b,)> is a sequence of positive real numbers.

For each nonnegative integer s,

(8) {c is the sequence {c, . }i,.

(4) {p(x)}=, is the sequence of monic polynomials defined
recursively by ¢%(x) = 0, i(x) = 1, and ¢h(2) = (v — )¢ (x) —
b gu(w) (n = 0).

(5) +(x) is a bounded increasing function defined on (— oo, + <o)
and having the property that

[ 7o) @y o) = b

k& #0,n=0,1,2,--+). (¢“Yx) is known to exist by the above-
mentioned theorem of Favard.)
(6) K®©(x) is the continued fraction given by

(e —a, [®—an, [T— s,

K(s)(x) — 1 | b1+s I _ b2+s l

(7) F(p=(x)) is the spectrum of the distribution function
P(), ie., L (@) = {o: —c0 << 400 and P + &) — P (x—¢)
> 0 for all ¢ > 0}. In terms of measures, /(¢ (x)) is the support
of the positive real measure induced by ‘().

(8) We shall say that the polynomials ¢{'(x), the bounded
increasing function ++*(x); and the continued fraction K‘(x) are
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assoctated with the sequences {a,}: and {b,}; if they are related to
these sequences by (4), (5), and (6) above.

(9) C will represent the field of complex numbers.

In terms of the techniques which are used, this study is a con-
tinuation of the work of Dickinson, Pollak, and Wannier, [11], and
that of Goldberg, [13]. It differs from these in considering the
nonsymmetric case (i.e., we do not require that the a,’s be zero).

We now state some previous results for reference and comparison.
The first of these is by Goldberg and many of our results will be
generalizations of it.

THEOREM 2.1. (Goldberg, [13]). Let {b,} be an arbitrary sequence
of positive real numbers with lim, .. b, = 0. Suppose {¢'}c are the
sets of orthogonal polynomials corresponding to {al® = 0} and {bF}7,
then for each s =0

(i) /)K= (1/x) is a meromorphic function with the series
representation

U Ke(lz) = —A® + 5, — 247
S (@)

where > AP[alP].

(ii) L (x)) ts the closure of the set of poles of xzK‘*(x);
namely, © =0 and 2 = £1ljaP,n=1,2, ...,

(iii) e + 0) — Oz — 0) = — AP (a7 @ = £1jald.

(iv) ¥(0+) — p(0—) = — A,

(v) {zr¢(1/x)}s  converges to anm entire jfunction only if

Next, in [2], Krein used the theory of completely continuous
operators in a Hilbert Space to prove

THEOREM 2.2. (Krein) Let {a,}s be a real sequence and {b,}; be
a real positive sequence. Then a necessary and suffictent condition
that Z(”(x)) be a bounded denumerable set with its limit points
contained in the set {oy, o, « -+, @,} is both {a;}7 and {b;}7 be bounded
and that lim; ;. g;; = 0, where g;; is the entry in the ith row and
the jth colummn of the infinite matrix

A4 —-aDHX(A—-alX - X(A—a,l)

where
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a, b, 0
b, a, by, «+-
0 b, a;, -

We shall also need some well-known results about continued
fractions and orthogonal polynomials. These can all be found in
Chapter III of Szego’s book, [16]. We collect them into the following
lemma.,

LEMMA 2.3. The convergents of the continued fraction K ()
are the rational functions ¢ (x)/6(x), and the zeros of the monic
polynomials ¢{(x) are real, simple, and interlaced with the zeros of
$n” (@),

We now enumerate those conditions which we will impose upon
the sequences {a,}; and {b,}7. They are as follows:

(1) the point set {a, @, a,, +--} is bounded and has derived set
{ay, aty, +++, 0}, where o, < o, < +++ < &, 1 = mn < oo,

(2) b,—0 as m— oo,

Under these conditions we shall show in §3 that K*®(x) is mero-
morphic in C — {«a,, --+,«,}. In §4 we let n = 1 and prove a generali-
zation of Theorem 2.1 above. Finally in §5 we consider 2 < n <
and again obtain results similar to those of Theorem 2.1

3. K®(x)is meromorphic in C — {ay, ---, «,}. In order to show
that K (x) is meromorphic in C — {«,, ---, «,} we need a continued
fraction theorem which is due to Worpitsky. We state this for
reference.

THEOREM 3.1. (Worpitsky, [17], p. 42) Let a,, a;, -+ be complex
Sunctions of any variables over a domain D im which |a,. | < 1/4,
p=1,2 ... Then the following statements hold:

_1._|+a_2|+ﬁ3—‘+ <+« converges

(i) The continued fraction w = T 1 1

uniformly over D.
(ii) The values of the continued fraction and of its approximates
are in the circular domain |w — 4/3| < 2/3.

We now prove our first result.

THEOREM 3.2. If the real sequences {a;}; and {b;}; satisfy the
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following conditions:

(1) {a, @y, -+-} s a bounded point set with derived set {ay, -+ -, a,}
where a, < a, < ++» < a,, 1 <n < oo,

(2) b,>0n=1,2,--+ and b,—0 as m— co, then for each
s = 0 the continued fraction

1 | [ R S

e —a® |x—a® |2—a®

K©(x) =

converges to a function which is meromorphic in C — {ay, -+, a,}.
Moreover this convergence is uniform in compact sets which do mnot
contain poles of K (x).

Proof. Using an equivalence transformation we can rewrite
K®\(x) as follows:

Ko@) — M@ =] b/le — a)e — )]

l 1 1 1
_ W — e — el |
| 1
Next let ¢ > 0 be given. Since the derived set of {a,, a,, - - -} consists
of the finite points «,, --., a,, there exists N. such that for every

1 =N, e, —a;| <¢/2 for some je{1,2,---,n}. Also b,—0, so
there exists M, such that for every ¢« = M., |b;/(¢/2)*| < 1/4. Therefore,
if we restrict  to the domain D, = {x: |2 — ;| >¢,7=1,2, ---, n},
then for each 4 such that ¢ = max {M,, N} we have

[bi/(2 — a)(@w — a;,) | = [b:/(e/2)] = 1/4 .
Now let L(¢) = max{M., N.} and set

K — B 1 bl | _
|z —a? |o—afl
= WP/ —af) | bEL/I(@ — apn)@ — e |
| 1 | 1

Then by Theorem 3.1 and our remarks above we see that K| ¥(w)
converges uniformly in D and moreover that the values assumed by
K{"(x) and its convergents all lie in the set |w — 4/3| < 2/3. Since
the convergents of K{*(x) are rational functions this means these
rational functions have no poles and hence are analytic in D.. Thus
by the uniform convergence K *(x) is also analytic in D.. But by
definition K}®(x) is just the tail end of K®(x) and hence K®(x) is
meromorphic in D,. Moreover this holds for each ¢ > 0, so K*(x) is
meromorphic in C — {a,, ---, a,}.
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We now consider the behavior of K (x) for large values of w.
To do this we let K{®(w) = K*(1/w) and consider w small. We have
the following result.

THEOREM 3.3. For each s = 0 the function
K (w)w = (1/w)K(1/w)

18 analytic about the origin and has value 1 for w = 0.

Proof. By the definition of K(¥(w) we have

Koy ) i1/(1 —1aé*>w) | _ ‘bi”wz/l(l - aé""lw)(l — ai"w)l |
_ bw [ — e w)(1 — afPw)]|
‘ 1

Now conditions (1) and (2) on the sequences {a;} and {b;} imply that
both these sequences are bounded. Thus for |w| small enough we
have

B0l — o)L — aPw)] | S T4 i =1,2,3, ..

Hence by Worpitsky’s theorem, (Theorem 3.1 above), K '(w)/w is
analytic about w = 0. Also, by inspection we see that K{*'(w)/w has
value 1 at w = 0.

We now note two results which will aid in the construction of
Yv(x) in §4 and §5. The first is an important recursion formula
which says that for s = 0 and » = 2 we have

(3-A) B@) = (0 — a0 @) — b @)

The proof of this formula is a straight-forward induction argument
and is omitted here. The other result is a complex orthogonality
relationship which is proven as a lemma.,

LEMMA 3.4. For each s =0 and 0 < p < n there exists R >0
such that

5B 1/(2m‘)gmszw;s)(x)KM(x)dx -

k #~=0,8,n=0,1,+2).

Proof. From Lemma 2.3 we know that

lim ¢ () /6 (x) = K®(x) .
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Hence if we divide (3-A) by ¢4 (x) and let n — o, we obtain
(3-C) VK@) = (@ — al?) — b K™9(x) .

Next we combine (3-C) and (3-A) by eliminating (x — a{®). After
simplication this gives

$u () K () — §,27 ()

(S—D) — b(s).K(s) (1+s) K(H—s) _ (2+s)
1 (@) g1 () (x) — ¢ut (@)} .

We now note that the term in parenthesis on the right of (3-D) is
just the left side with a change of index. Therefore we can interate
this formula, and recalling ¢{’ = 1,449 =0,7=1,2, --., we obtain

BB @K@ - s = ([T I K@)

Now we multiply (3-E) by x?/(2z¢) and integrate about a circle
lz] = R in the complex plane. Since xP¢(x) is analytic, this gives
us

(s
@B L] es@Ke@de = B Ko@) - ke @de
21t Jisl=r 271 Jizi=r
where ki = J]2,b® == 0 because each b, is positive. In the integral

on the right of (3-F) we now let © = 1/w. We also choose R large
enough so that each of the functions K/**(w)/w,7=0,1, -+, n is
analytic in the disc |w| = 1/R. This is possible by Theorem 3.3.
Then by using the residue theorem and the fact that Ki+9(w)/w has
value 1 at w =0,¢ =0, ---, n, we have

1

——§ 223 (@) K ) () dar
271 Jisl=R

R . A LN S E Sl LY
271 Jwl=1/r w w
=k40,,

Sections 4 and 5 will change the above complex orthogonality
into a real orthogonality relationship and hence obtain ().

4. Constructing ¥ (z) for one limit point. We now assume
that in Theorem 3.2 n =1, i.e. a;—a, as 71— o, As a further
simplification we initially choose «, = 0 and then later show this
restriction is not needed. Now in order to convert (3-B) into a real
integral, we first obtain a Mittag-Leffler type expansion for the
function K*“(x). For this we need a theorem of Montel.
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THEOREM 4.1. (Montel, [14], p. 38) A mnecessary and sufficient
condition that a meromorphic function f(z) be the limit of rational

functions whose zeros and poles are real, simple, and interlaced on
the real axis is that f(z) have the form

f@) = B— Az + 3 Az — @) + L)

where the numbers B, A, A,, and «, are all real, A and A, are all
of the same sign, and the series >,7 A.(a,)™" is convergent.

We now obtain our expansion for K®(x).

THEOREM 4.2. With the hypothesis of Theorem 3.2 and with
n=1a =0, the function K (x) has the form

K®(x) = A% [w + ZZ AP (@ — o)

where A® and AP, a =1,2, -+, are all nonnegative and S,7, ALY < oo,

Proof. From Theorem 3.2 we know that K©(x) is meromorphic

in the set C — {0}. Thus K{"'(w) = K*'(1/w) is also meromorphic in

— {0}. However, by Theorem 3.3, K{’(w) is analytic at w = 0, and
hence K{”(w) is meromorphic in C. Next from Lemma 2.3

K®(x) = lim ! B () ’
noee ¢$W )
so that
o) — lim L L)

s L)

Also from Lemma 2.3 the rational function ¢{*¥(z)/¢{(z) has its zeros
and poles interlaced on the real axis. Thus w"gH(1/w)/w s (1/w)
also has its zeros and poles interlaced on the real axis. Now since
K®(x) is known to converge uniformly on those compact sets of

— {0} that exclude the poles of K©(x), it follows that K.\ (w)
converges uniformly on those compact sets of C which exclude poles
of K{(w). Therefore we can apply Theorem 4.1 to K{'(w). This
gives

K@ (w) = C® — Biow + > BY (1w — B) + 1/8%)
1

where B/, B{*, ... are all of the same sign and > B!”[B']™* con-
verges. Next, K;'“’(O) =0; so C* = 0. Thus converting to K“(x),
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we obtain

o) = =B _ By 1
e = BT @ - 1eE)

Now, letting A = —B{®, AP = —B/[BY] and af = 1/8, gives
us

oy - AT &AW
K®“(x) = . +§1 P

where A®, A, A{®, ... are all of the same sign and 37 A{® converges.
Finally the fact that the A{®’s are actually non-negative follows from
Hurwitz’s theorem and the special interlacing of the zeros of ¢{F(x)

with those of ¢{*(x). This interlacing means that o7 (x)/¢5(x) has

only positive residues, and by Hurwitz’s theorem the limit function
K@ (x) must have nonnegative residues.

Next, before proving our main theorem of this section, we state
a result of Carleman which will give us uniqueness in our result.

THEOREM 4.3. (Carleman, [15], p. 59) If =, 1V'b, = <, then
Y(x) 18 umique when it is normalized by the conditions ' (—co) =0
and for x # — oo, Y& (x — 0) = Y (x).

We now obtain ' (x).

THEOREM 4.4. Let the real sequences {a;}y and {b;}7 satisfy the
following restrictions:

(1) a;,—0 as 1 — oo,

(2) b;>0 for each i and b;,— 0 as i — . Then if ' and
K®(x) are defined by (5) and (6) of §2, we have

(1)
A(S)

x

K@) =2 + 3, AP — af)
where the A and A® are all nonnegative and >0 AL < oo,

(i) (x) is a unique jump function and F((x)) is con-
tained in the closure of the set of poles of K'¥(x).

i) ez + 0) — v — 0) = AP for © = alf.

(iv) ¥(0+) — 4(0—) = AW

Proof. (i) is just Theorem 4.2, To prove the remainder of the
theorem, we first note that condition (2) together with Theorem 4.3
guarantees that +¥(x) is essentially unique. Therefore we need only
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show that a jump function with jump A at a®,7n=1,2, ... and
jump A at x = 0 is actually a distribution function for the polynomial
set {¢.”(x)}. Thus let ¢*(x) be such a jump function and consider

S+Nx"¢§f’(w)dq/r(s’(x). By the definition of the Riemann-Stieltjes integral

we have

S+mx”¢;”’(x)d«/r(s>(x)
= 5,0 60(0) + 3, AP[a el (@)
i=1

provided the series on the right converges. To show this convergence
and to evaluate the sum, we combine Lemma 3.4 and Theorem 4.2.
This gives us

2| wsrf
lz|=R

27

+ >

Q
= 0 .k(s) .
* o —alp e
J

A(S) i A(js) }da/

Now R was chosen so that |w| < 1/R contained no singularities of
K{(w). Thus |z| < R contains all the singularities of K*(x). Also
the sum converges uniformly and absolutely on |2| = R, so we can
integrate the series term-by-term. We use the residue theorem and
obtain

0 63(0) + 3 APLaPH@") = 0,00l

T wrg (@) (@)

Since this sum is the same as our expression for S

we see that

Smx"?ﬁ%s’(x)dv“’(%) = Oupr ki’

E2+0, =012 .--, s=0.

Thus with respect to +©(x), ¢'(x) is orthogonal to x*,»p =0,1, ---,
n — 1. Hence by definition, +‘(x) is a distribution function for the
polynomial set {s{(x)}.

It is of interest to note that the converse of Theorem 4.4 also
holds. This follows immediately from Krein’s result which we labeled
Theorem 2.2. Thus suppose that the bounded increasing function
Jr(x) has a bounded spectrum with its only limit point at zero. Then
by Theorem 2.2, lim; ;) (,=) 9;; = 0 where g;; is the entry in the ith
row and jth column of the infinite matrix
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a, b, 0
bl a, b2 e
0 b, a -

Thus we see b,— 0 and a;— 0. Combining these comments with
Theorem 4.4 gives

THEOREM 4.5. A necessary and sufficient condition that &7 (4 (x))
be a bounded set with a single limit point at zero is that the sequence
of rattonal functions ¢ (x)/p(x) converges to a function K 9(x)
which has an expansion of the form

K@) = AVfx + 3 AL (@ — aif)

where AF > 0 for each n and S AY < . Moreover ) (x) 1s «a
Jjump function with jumps AS at aff and A® at x = 0.

We now show that in Theorem 4.5 the limit point of the spectrum
does not have to be a « = 0.

COROLLARY 4.6. A mecessary and sufficient condition that
(P (x)) be a bounded set with a single limit point at © = a #* o
18 that the sequence of rational functions ¢ (x)/el(x) converges to
a function K (x) which has an expansion of the form

A(s) d A(S)
+ n

K@ (x) = ,
() x—a =1 —(a+ a)y)

where A® =0 and AP >0 for each m with ST AY < . Then
FO(x) 18 a jump function with jumps of AP at ofF + a and A® at
x = a.

Proof. By Theorem 2.2 S7(4*'(x)) is a bounded set with a single
limit point at « = a if and only if a;,—a and b;,— 0. Now
Pala(®) = (¥ — @,)9." (%) — bug2i(2) ,
so that
gana(@ + @) = (@ — (@, — @)@ + @) — bugiy(v + @) .

Thus the sequence of polynomials {¢'(x + a)}> is associated with the
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real sequences {a, — a}3_, and {b,};7. Hence if a,—a and b,— 0,
then by Theorem 2.9 the polynomials ¢.’(x + @) are orthogonal with
respect to a function +{*(x) which has a bounded spectrum with its
only limit point at zero. Now

[ se@en @@ - a
N S $@ + @) (@ + a)dy i (@)

so the polynomials {¢{'(x)}; are orthogonal with respect to v*(x — a).
But b, — 0 implies that +*'(x) is unique, so ¥“'(x) = & (x — a). Also
by Theorem 4.4 ¢ (x + a)/¢!(x + a) converges to a function K/(x)
which has an expansion of the form

A( s) A(S)

x— alf

D o

Consequently, ¢ (x)/s(x) converges to a function K ©(x) which has
the form

(s) o (s)
Ko@) = Ko@—a) = A7 45 A
T —a T ¢ — (af + a)
Moreover, {*(x) has a jump of AP at © = ai®, so ¥ (x) = v®¥(x — a)

has the same jump at ¢ = a'” + a. This proves the corollary.

We now turn to an interesting convergence question. We have
shown that if a;— 0 and b,— 0 then

K(s)(w) — Iim?/l)' w"— —1 (lLs)(l/w)
i noveo "¢u (1/w)

is a meromorphic function. Hence we ask, when does the sequence
{F{(w) = w ¢ (1/w)} of polynomials converge to an entire function
so that the numerators and denominators of the rational functions
which converge to K{&(w) will themselves converge to entire functions.
The techniques of this section were used by Dickinson, Pollak, and
Wannier, [11], when they considered the special case a; = 0,7 =0, 1,---
and 37 b; < oo,

THEOREM 4.7. If S la;| < o and tf 357b; < o then the sequ-
ence of polynomials {F\(w)}y converges to an entire function F'=(w)
as n— co,

Proof. Since F " (w) = w"s(1/w) and

Puta(®) = (& — @;7)g."(2) — b6.2()
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we have
F(w) = (1 — aw) " (w) — biw Fi(w)
Next we let
G (w) = max {| F"(w) |, | F2h(w) [} .
Then
[Fh(w) | = {1+ e [Jw [} F(w) | + 07 |w* | | FiZy(w) |,
S0
| Fath(w) [ = {1+ [ai | [w] + b2 [w® }G (w) .
Since we also have
Gih(w) = max {| Fuiy(w) |, G2(w)}
this gives
Gila(w) = (1 + [af? [ w] + 0 [w* )G (w)
Now by definition F{*(w) = 1, so G{®(w) = 1. Then by iterating the
above inequality, we obtain
Ghw) = TT{L+ @ | [w] + b )
and thus
| Fiiw) | = TLL+ [0 | [w] + b [} .
We next note that the infinite product

Eww) = TTHL + @i lw] + b [w?]}

converges uniformly for values of w in a bounded domain because of
the hypothesis >, b;, < « and > |a;| < . Using this we can show
that the sequence {F{”(w)}y is a Cauchy sequence in any bounded
domain. We proceed as follows:

| F2(w) — Fuo(w) | = | —alwF(w) — b w F2(w) |,
s0
| Fith(w) — Fi(w) | = [w | B (w)(|ax” | 4 027 [wi)

and thus for each N =1
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| Fitpw) — Fiw)| £ 5 | Fitlyw) — Fity__i(w)
< lw Ev@)] 3 (a0 |+ b w)} .

Now let ¢ >0 be given and suppose w is in the domain D =
{w:|w| < M}. Since > (Ja;| + b;) converges, we can choose % so
large that for each N = 1 we have

{EN(|ai| + biM)}-M-max E®(w) < ¢ .
n wE€D

Thus we see that in the uniform norm {F}”(w)} is a Cauchy sequence
in the domain D, and hence converges uniformly to a function analytic
in D, Since this holds for all bounded domains, the resulting function
is entire and the theorem is proven.

Next we give some necessary conditions for the convergence of
F{(w) to an entire function F(w). We first note a fact about the
structure of F{*(w). Namely; for s = 0 and n = 2

Fi(w) =1 — {"z'l abew

(4-4) °

{3 ey — St + o
1

0=i<jsn—-1

The proof of (4-A) is a simple induction argument and is omitted
here,

THEOREM 4.8. The following conditions are each mecessary for
the convergence of the sequence {F\"(w)} to an entire function.

(i) D5 a; converges.

(i) 257 a < .

(iil) X7 b; < oo,

Proof. Suppose the polynomials F(“(w) converge to the entire
function F'®(w) = e{® + el®w + e¥w* + --.. Then by (4-A) we have
e =1,e® = 32, a® and

n
e = lim{ > aPa? — > bé*‘”} .

n—oo \0<Zi<j=n =1

Now for each n

n 2 n
() = Saps+2 3, apap;

0 0si<jsn

therefore,
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n 2 n
2 (s)y(5) <% a23)> B zﬁ)‘J (a§8))2
ai a/j =

0Si<j=n 2 !

and thus

e, = lim

n—rco

{ (Sa) 2— Sy Zb} |

Next since >)7 ai® = e,, the above can be written

2e, = lim {ot — 3 [(af")* + 20{"1)

n—oo

= ¢ — lim 3 [(af")* + 200"] .
n—oo =0
Hence we see that 3.2, ((a{”)* + 2b{*) = €2 — 2¢,, and since each b, is
positive, we can conclude >7,b; < = and 32, a? < oo,

In the special case of positive a;’s we can combine Theorem 4.7
and 4.8 to yield necessary and sufficient conditions for convergence
of F!* to an entire function.

COROLLARY 4.9. If a; and b, are positive for each i then the
following are nmecessary and suffictent conditions for the polynomials
F&(w) to converge to an entire function.

(i) 25 a; < o,

(i) Db, < oo,

Proof. Since each a; is positive, conditions (i) and (ii) which are
necessary by Theorem 4.8 are also sufficient by Theorem 4.7.

5. Constructing () for ® = 2. In this section we allow the
point set {a,, a,, ---} to have any finite number of limit points. We
are again able to construct *(x) by using Theorem 3.2 and Lemma
3.4. First, however, we must obtain a Mittag-Leffler type expansion
for the function K (x) of Theorem 3.2 in the case where 2 < n < oo,
The following preliminary work will aid in obtaining this expansion.

We first recall that from Theorems 3.2 and 3.8 we know that
K®(x) is meromorphic in C — {a,, --+, «,} and is analytic outside some
circle || = R. Also, K®(x) is the limit of rational functions whose
poles and zeros are real, simple, and interlaced; so the same properties
hold for it. Hence we can find real numbers A, and B, such that
B, < B, and K®(x) is analytic in C — [B,, B.]. We also choose
Bin1=12 ...,n—1in such a way that «; < 8; < &;., and K©(x)
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is analytic at B;,. This is possible because K *'(x) has only a countable
number of singularities in C — {«,, ---, «,}. Next we label the poles
and residues of K'(x) as follows:

(a) {ai®i}r-. is the set of poles of the function K (x) in (B,;_;, 8;)
ordered so that |a{’] — ;| = |af), —a;| 1 =1,2, -« n;k=1,2, ...

(b) A is the residue of K at the pole a’,.

We label the poles and residues of the rational functions g+ (x)/6((x)
in a similar manner:

(e) {aifl . Jmo is the set of poles of gifl(x)/si(x) in (B;_ 1,8)
ordered so that Ialkm—a |>;a1,‘+1m— a;l1=1,2,---,n;k=1,2, -
m(i);m=1,2,-+;md) + m@) + --- + m(n) = m,

d) A, is the residue of g)’”“(”c oS (x) at alf) ..

Now, from the interlacing of the zeros and poles of s (x)/s((x)
we know that the residues A, , are posmve Also by Hurwitz’s
theorem as m — « AY),,,— AP, and aif ,— af.. This leads us to
represent the function g;i,fii)(%)/gb;,f)(m as a sum of functions. Namely,
let f©(i, m;x) = 209 AP w/(x — &), ). Then

(@) _ R AP,
(8)(%) % ; v o— azsl)c m
(5-A) ]
= >, f*(1, m; 2),

il
—

7

where (¢, m; x) is a rational function whose poles are real, simple,
and have positive residue. But any rational function whose poles are
real and simple with positive residue also has real simple zeros which
interlace with the poles. Thus ¢\ *(2)/¢.(x) is the sum of n rational
functions f(7, m; ) each having real, simple poles and zeros which
are interlaced on (8,_,8:,) 1 =1,2,---,n. We next need a lemma
concerning the residues A ,, and Al i

LEMMA 5.1, For each s = 0 we have
(1) lim,. 37, k’””f Al =1,

(ii) Zzzl 2k=1 1 k S 1

Proof. Since

ml 1 @(34—1 (1/’1/0)

/ (s)
m— U ¢(s (l/w (I/ZU)KX (w)

and since this convergence is uniform about w = 0, we see from
Theorem 3.3 that

m 1 i,fi} (1 _
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But by (5-A)

L o) | _ e Ath,
Vo “Sr e )~ & o e

(s)
i k.m

,_.
=

1=

m(s

1
M
1N

=& T wall,

So by setting w = 0 we obtain

1 geP(Ljw) | _ &,
{w $°(1/w) } 33 Ak,

and (i) of the lemma follows from (5-B).
Next, as noted above, A{) ,— A, as m — o. Therefore, for
each integer K,

Hence the monotonically increasing sequence {37, 3% Ale_, is
uniformly bounded. Thus >\7, >\, AL <1 and (ii) holds.

Since much of the remainder of this section deals with subsequences
of subsequences, we shall attempt to simplify our notation by some
temporary conventions. First we assume that s is a fixed nonnegative
integer and then we suppress it from our notation. Next we change
our multiple subscripts to arguments. Thus, in particular, we now
write AL, =A(1, k), A%, .= A1, k, m), &), = a(, k) and af*) ,, = a(t, k, m).

We now consider the sequence {f(1, m;x)} of rational functions
and proceed as follows to obtain a convergent subsequence: For
n =1, let D(1,n) be a domain defined by

DA,n)={x: |z — ;| = 1/n}.
Then from our labeling of the poles of K(x) we know that only finitely
many of the points a(l, k), (k =1,2,...), lie in D@, n). Let these
points be «(1,1),a(1,2),---,a(l, N,). Now as m — o, a(l, k, m) —
a(l, k); so there exists an integer M, such that m = M, implies
|a(1yk!m)_a(1yk)lél/%! k:1927°"’Nn-
Therefore, if we restrict x to the domain

D*1,n) ={x:|x —a,| =1/n, |z — a(l, k)| = 2/n,k=1,---,N,}

and choose m = M,, we have
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g A, k, m) =& A1, k, m)

k=1 0 — Cl'(]., k, m) = k=1 |Q'/' - CK(]., k! m)'
< (3 ALk, m))
k=1
=n.

This means that the sequence {f(1, m; x)}5;, is uniformly bounded in
D*(1, ») and hence contains a subsequence which converges uniformly.
Moreover, each function in this sequence is analytic in D*(1, %), so
the limit function is also analytic in D*(1,n). We now repeat this
process for each #, starting with # = 1 and at each stage using the
convergent subsequence obtained at the previous stage. Then we
apply the Cantor diagonal process and obtain a sequence which conver-
ges uniformly on every compact subset of C — {a;; (1, 1), (1, 2), «--}.

Denote this final subsequence by {f(1, m; «)} and let the limit function
be fi(x). Then

lim (A1, m'; @) = fu(2) ,

m’—co

and the convergence is uniform on compact subsets of
C — {0(1; a(lr 1)7 a(ly 2)7 ° '} .

Therefore, fi(x) is analytic in C — {a; @(1, 1), a(1, 2), «--}.

We next consider the sequences {f(2, w';x)}, and by repeating
the above process we obtain a new subsequence which converges
uniformly on the compact subsets of C — {a,; a(2,1), a(2,2), ---}.
Let fix) be the limit of this sequence. Then f,(x) is analytic on
C — {ay; a(2, 1), a(2, 2), ---}, and

fiw) = lim f(2, m"; x)

where m” is a subsequence of m’. Continuing in this manner with
{f(8, m"; )}, ete., we eventually obtain a subsequence {m*} and func-
tions fy(x), «--, f.(x) such that

lim f(i, m*; x) = fi(x) , i=1,2 0, m,

m*—roo

where fi(x) is analytic in C — {a;; a(3, 1), (4, 2), ---}. Next for each
m we have

S, m; ) + -0 + fln, m;a) = ég‘; - f(i:(f’]:n;@) )

and since
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K@) = lim 3, S, Ak, m)
m—roo i=1 k=1 ) — a(?/, k, m)

o AL, k, m*)

we see that

K(») = lim {f(1, m*; 2) + -+ + f(n, m*; )}

m*—rco

= fi®) 4 -0+ Sul@) .

This, in turn, means that for each 7, (1 <1 < ), f;(x) has a simple
pole at the points «(z, 1), a(7, 2), --- because K(x) has simple poles at
these points, while fi(x), (7 # j), is analytic here. We summarize the
above results as follows:

THEOREM 5.2. For each s =0, if {a,a, -} has derived set
{ay, @y, - -+, a,} where each «; s finite and tf {b;}7 satisfies b; > 0
for each i and b; — 0, then the continued fraction

1 l___ bs*l 1‘_‘ bs‘z l_

\x_as im_a’su Ex_as;rz

K*“(x) =

can be represented in the form
K®(x) = fio() + fi7@) + -+ 4+ fi7(2)

where each f{(x) is meromorphic m C — {a;} and analytic in
C — [Bi_y, Bil, for B.s satisfying

Bo<a1</81<az<"'<Bn—1<an<8n-

We now turn to the problem of expanding each function f,9(x)
in a Mittag-Leffler type series. We have the following result:

THEOREM 5.3. For each 1¢€{l,2, ---, n} we have

fl@) = ~B o+ Ay 5 ALK _
x—oa;, k= —al,k)

where
(@) e A@ k) < e
(b) 2?:1 Bi = 0

Proof. We first recall that each f(¢, m;x) is a rational function
with its zeros and poles interlaced. We also note that K(x) has residue
A(1, k) at the pole a(i, k), ¢ =1, -+-,m;k = 1,2, --.. Therefore, since
K(x) = fi(x) + +-- + f.(x), it follows that f;(x) has residue A(7, k) at
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the pole «(i, k) because for j == ¢ f;(x) is analytic at «a(i, k), k = 1,2, «--.
Next fi(x) is meromorphic in C — {«;}, so setting 2z = «a; + 1/y,
fi(a; + 1/y) is meromorphic in the finite y plane with poles at the
points y=1/(a(t, k)—a;), k=1,2, ---, and residue — A(1, k)/(a(i, k) —a;)?
at 1/(a(i, k) — a;). We now apply Montel’s theorem (Theorem 4.1
above) to the meromorphic function f;(«; + 1/y). This is possible
because

fila + 1/y) = lim f(i, m*; a; + 1/y)

and f(i, m, z) is a rational function whose zeros and poles interlace,
This gives

file; + 1Jy) = —B; + Ay
i —A(, k) { 1 a(t, k) — ai}

H@ b —ar gl k) —ay 1

where

s (e, k) — o) A1, k)

k=1 1 (a(@'y k) _ ai)z = lc2=1 A(,Ly k) < oo,

Changing from the y-plane to the z-plane, y = 1/(x — «;); so

fi@) = — B, +
& —A(1, k) 1 1
’ +
i k2=1 (a(i, k) — a;)? 1 . 1 1
T — a, a(, k) — «; a(i, k) — «;

v —a, = —ak)

This gives the desired representation, and we need only show
» B, = 0 to complete the proof. Now

K@) = fi(@) + fo@) + -+ + ful@),

SO0

Hence

K*(w)=_i3i+ﬁﬁ_~+ﬁiw’

-
I
-
S
Il
-
—
|
BN
-
S
©
Il
1y
=
I
-
-
|
Q
—~
S
=
-
S

so K,(0)=—>",B;. But by Theorem 3.3, K,.(0)=0, and thus
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., B, = 0 and the proof is complete.
We are now ready for the main theorem of this section.

THEOREM 5.4. Let the real sequences {a,}; and {b;}> satisfy the
following conditions:

(1) The derived set of {a,, @y, @y -} 18 {a, @y, +-+, a,}, where
each a; 1s finite and a, < a, < «++ < «,.

() b; > 0 for each © and lim, . b; = 0.
Then if v (x) and K©®(x) are defined by (5) and (6) of §2, we have

(i) K®(x) is meromorphic in C — {ay, ---, a,} and has o repre-
sentation of the form

n A(s;

( .
K 8) Z‘ T . =
i=1 X — ; i=1k=1 & — ;%

where A =0 (md AP <0,0=1, -« m; k=1,2, .-« and D7, AP, <
1 =1,2,
(ii) "s (”c) is @ unique jump function and P (') is contained
i the closme of the set of poles of K(x).
(i) v+ 0) =y — 0) = Al i =1, e, m;k=1,2 ...
(iv) v*(a; +0) — pa; — 0) = 4,1 =1,2, -+, m

Proof. (i) is just Theorems 3.2, 5.2, and 5.3. The uniqueness of
() follows from condition (2) and Carleman’s theorem (Theorem 4.3
above). Thus to complete the proof we show that a jump function

@(x) with jumps defined by conditions (iii) and (iv) is actually a
distribution function for the polynomials {4} defined by (4) of §2.
Now by Lemma 3.4 we have for 0 < p < n and some R >0

271

By using the representation for K (x) given by part (i), this can be
written

3 gl A
lwi=R i=

2mi Ser—a SFEc—al

= {1 be..fon,

Now since R was chosen so that (1/w)K{*™(w) was analytic in
{w:|w| < 1R},i=1, --.,m, it follows that K (x) is analytic outside
and on |z | = R; so the series converges uniformly here and we can
integrate term-by-term. This gives

(5-C)
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| e 3 AT 55 Al

27y

= 3% (@) (@) A + i S (@) e (@) Al

[l

S+:x”¢””(9&)dﬂlf‘”($) .

Therefore, if we define +*(x) to be a jump funection with jumps
given by (iii) and (iv), then

| o @aye = {1l befo., .

Thus ' is a distribution function for ¢!”(x) and the proof is complete,
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