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ON THE RELATIONSHIP BETWEEN HAUSDORFF
DIMENSION AND METRIC

DIMENSION

A. C. VOSBURG

The definitions of the Hausdorff dimension diπu X, upper
metric dimension dim X and lower metric dimension dim X
of a metric space X all depend upon asymptotic characteristics
of diameters of sets in covers of X, We relate these notions.
First we note that dinu X < dimX holds for all totally bounded
metric spaces X, while on the other hand there exist perfect
subsets A of [0, 1] satisfying dinu A = 0 and dim A = 1 = dim
[0,1]. Finally we show that there exist perfect subsets S of [0,1]
which satisfy dinu S — 0 and dim S — 1 even when strong
local conditions are imposed.

The notions of Hausdorff dimension (see 1, 2) and metric dimen-
sion (see 5 p. 296, 8) are closely related; in fact most compact metric
spaces encountered in analysis have the same Hausdorff and metric
dimensions. In this paper we investigate some aspects of the rela-
tionship between these two concepts.

By the Hausdorff dimension of a subset E of a metric space is
meant the number ά\mh E = sup{p: μ*(E) = + °°}, where μ*(E) is
defined to be 4- ^ if p = 0 and μ*(E) = sup£>0 l(E, p; ε) if p > 0,

( 1 ) l(E, p; ε) = inf | χ (diam E^: E c LKt00!^, diam E^ε for each

For each totally bounded subset A of a metric space (i.e. each
subset which for each ε > 0 can be covered by a finite number of sets
of diameter not exceeding ε) the upper metric dimension dim A and
lower metric dimension dim A of A are defined as follows (all loga-
rithms have base 2):

( 2 ) dim A = lim (log Λ/r

e(A))/log(ε-1)

ε->0+

and

( 3 ) dim_A = Um_(log iV£(A))/log(ε-1) ,
ε-+0+

where, for each ε > 0, Nε(A) denotes the smallest number of sets in
any cover of A by sets of diameter not exceeding 2ε. It is customary
(see 5, p. 280) to abbreviate log Nε(A) by Hε(A); this function has
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been called (see 5, p. 280) the ε-entropy (or metric entropy) function
of A. When dim A = dim A this common value is called the metric
dimension of A and denoted dim A. The asymptotic behavior of Hε(A)
as ε —> 0 + in some sense reflects the massiveness of A, and various
applications of this notion have appeared in recent years (see 3 , 5 , 7 , 1 0 ) .
For a tour of the subject of metric entropy see Lorentz (6, 7).

We will use the elementary inequality Nt(A) ^ M2e(A) which is
valid (see 6, p. 151) for all totally bounded sets A, where Me(A)
denotes, for each ε > 0, the maximal number of points in any subset
S of A having the property that each pair of points of S are separ-
ated by distance greater than ε.

dim A ^ dim A ^ dim A being obvious whenever meaningful, we
wish to further compare dimfe A, dim A, dim A, dim A, and investigate
some related questions. First (Theorem 1) we will note from elemen-
tary considerations that the inequality

( 4) dimA A ^ dim A

holds for each totally bounded subset A of a metric space. On the
other hand we will note that there exist (even perfect) subsets A of
[0,1] for which

( 5 ) dimA A = 0 and dim A = dim [0,1] = 1 .

Our main result (Theorem 2) involves looking more deeply into the
relationship between (4) and (5) by imposing certain additional local
conditions.

2. THEOREM 1. Let A be a totally bounded subset of a metric
space X. Then A satisfies (4).

Proof. Let dim A = s ^ 0, and assume δ > 0. By the definition
(3), there exists a sequence εu ε2, which decreases to zero such
that logNεn(A) ^ (s + δ) log (ε-1), and hence N£n(A) ^ (l/en)

8+δ for each
n = 1, 2, . This implies the existence of a family of no more than
(l/εw)8+δ sets of diameter not exceeding 2en which covers A. Taking
ε = 2εn in the infimum I in (1), this yields

l(A, p; 2en) ^ (l/en)°+*(2eny ^2-iίp^s + δ.

Hence μ*(A) ^ 2P < + oo if p :> s + δ, which, as desired, implies
dimΛ A ^ s.

While Theorem 1 states that the Hausdorff dimension of a compact
set A must be small if the ε-entropy of A approaches + oo sufficiently
slowly, i.e., if dim A is small, it is natural to ask what can be said
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in the converse direction. Quite elementary considerations show that
the reverse inequality need not hold. In fact, it is easy to construct
(even perfect) sets A of real numbers for which (5) holds. For ex-
ample the range R of the sequence {αj defined by

αx = 10, ak =ak_x - l/(ft log2 ft) if ft > 1

satisfies (5), and R can be used to build a perfect set satisfying (5).
An example is any perfect set A defined by A = U*~i Ak U {lim^+oo a*},
where each set Ak is taken to be a perfect set satisfying

dim, Ak = 0, inf Ak > ak+1 + (l/2)(α4 - ak+1) for ft = 1, 2,

and

sup Ak < ak_λ - (l/2)(αfc_! - αfc) for ft = 2, 3, .

While in a sense this answers the converse question to Theorem
1, much is left to be desired, for the largeness of dim A is really a
consequence of that of dimiϋ, and R is only a countable set. We
show that the differences between the notions of Hausdorff and metric
dimensions run deeper than might be suggested by the above. To do
this we introduce the notion of the metric dispersion of a totally
bounded subset of a metric space.

DEFINITION 1. Let A be a totally bounded subset of a metric space

and let x0 e A. Then by the upper metric dimension of A at xOf denoted

dim (A, x0), is meant the number

dίm~(A, Xo) = inf {finΓiϊ£(A n U)βog (ε-1): UεU(xo)\, where U(x0)

denotes the class of open neighborhoods of x0.

DEFINITION 2. By the metric dispersion of A, denoted disp A, is
meant disp A — infβoβil (dim (A, xQ)).

THEOREM 2. There exist perfect sets S of real numbers satisfying

( 6 ) dimA S = 0 and disp S = 1 .

Proof. Abbreviating 2α by exp α, we let

( 7 ) ^ = 1,3, = exp {

mn = exp {(n - 2)((n - I)!)2}, n = 2, 3, . . . .

For each n = 3, 4, and each closed interval / = [α, b] of length at
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least δn_lf we denote by F(I; n) the subset of I which is the union
of all intervals of the family

1; n) = {[a + i(δn + ε j , a + i (δn + e.) + δn]: ί = 0,1, , m% - 1} .

From (7) it follows that

K ^ en ,
and

mΛδn + εn) ^ 2mwε, ^ δw_x ,

so indeed F(I; n) is contained in I. Further, for each I and n, the
distance between any two intervals of $(/; n) is no smaller than εn,
and the distance between any pair of left end points of intervals of
$(/; n) is no smaller than δn + εn > ew.

Now we can define the desired set S as a generalized Cantor set.
Let the sequence {AJjΓi of sets be defined by

A, = [0,1], An = U {F(C; n): C e A ^ } if n ^ 2,

where, for each n = 1, 2, , Aw denotes the family of all component

intervals of An (the components of each An are intervals of length δn).

For S we take S = Π S AΛ.
Since each Aw has Jlt=i ^k components, each of length δni to prove

that dimA S = 0 it suffices to observe that from (7) it follows that

lim {(ΠLi mfc)δ;} = 0 for each p > 0 .
n-++oo

To establish disp S = 1, we consider any open interval / such
that S Π I is nonempty, and estimate Ne(S Π i) from below. If n is
sufficiently large, / contains a component interval [c, eZ] of An-1, and
hence also contains all intervals of $([c, d\\ n). If we let C denote a
cover of F([c, d]; n) by sets of diameter not exceeding 2e, ε = (l/2)eH,
then C covers also the set of left end points of the intervals of
$([c, d]; n), and no covering set among the sets of C covers more than
one such endpoint. Hence the number of covering sets of the family
C cannot be less than mn. This implies that

(8) N{εnl2)(S ίΊ I) ^ mn

holds for all sufficiently large n. Since (7) implies that

(logmj/log (2/εJ = (n - 2)((n - l)l)2/(n((n - I)!)2) — 1 as n — + oo ,

we have, from (8),

ε-*0+



ON THE RELATIONSHIP BETWEEN HAUSDORFF DIMENSION 187

Since this limit superior cannot be greater than 1, we have disp S = 1,
which completes the proof of the theorem.

It remains an open question whether there exist perfect sets S
satisfying dim,, S = 0, dim (S, x) > 0 for all (or at least most, in some
sense) of the points x of S, where dim (S, x) is defined analogously to
dim (S, x) in Definition 1.

In conclusion we mention that Theorem 2 leaves open the question
as to whether for two sets A, B with dimΛ A ^ ά\mh B any inequality
necessarily follows for disp A, disp B. The answer is in the negative;
that is, for each ω, 0 < ω < 1, there are perfect sets A, B of real
numbers such that dimΛ A < dimΛ B = ω and ω = disp B < disp A = 1.
This follows from Theorem 2 together with the fact that for each
ω, 0 < ω < 1, there exist compact perfect sets B such that dim^ B = ω
and Hε(B) ~ ω log 1/ε. Such sets B are constructed in Hausdorff 's
paper (see [1], §10).

The author is very much indebted to his teacher, Professor George
Lorentz, for helpful conversations concerning this paper.
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