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THE REGULAR OPEN CONTINUOUS IMAGES
OF COMPLETE METRIC SPACES

HowaArp H. WICKE

This article characterizes the regular T, open continuous
images of complete metric spaces, These images are shown
to be the regular T,-spaces having monotonically complete
bases of countable order. This follows from a theorem of
Worrell and Wicke and a theorem below which shows that
every regular T, -space having a monotonically complete base
of countable order is an open continuous image of a complete
metric space.

The class of regular T,-spaces having monotonically complete bases
of countable order is equivalent to a class of spaces Aronszajn intro-
duced axiomatically in [4]. This class includes the complete metric
spaces and spaces satisfying R. L. Moore’s Axiom 1 [9]. Theorem
2 provides contrast to the theorem of Ponomarev [10]: every 7T, first
countable space is an open continuous image of a metric space. A
result related to Theorem 3 is Arhangel’skii’s characterization of the
T, open compact continuous images of metrizable spaces as the meta-
compact developable T,-spaces [2]. In connection with this result, it
may be noted that an open compact continuous T, image of a regular
T,-space having a base of countable order also has a base of countable
order [11], and a 7, metacompact space having a base of countable
order is developable [12].

For notation and terminology the reader is referred to [7], [9],
and [12]. Space is used here to mean topological space. The null
set convention is not used. A base for the topology of a space S
will be referred to as a base for S. Recall that a collection of sets
is said to be perfectly decreasing [12], if and only if each of its
elements properly includes an element of the collection; and that a
base of countable order for a space [3], can be defined as a base B
for the space such that if P is a point common to the elements of a
perfectly decreasing subcollection K of B, any open set containing P
includes an element of K; i.e., the elements of K form a base at P.
By a monotonically complete base [11], is meant a base B such that
the closures of the elements of any monotonic subcollection of B have
a point in common. Recall also that regular 7T-spaces are T,, as
Koutsky remarked [5, p. 826].
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2. Regular spaces having monotonically complete bases of
countable order.

THEOREM 1. A regular Tyrspace S has a monotonically complete
base of countable order tf and only tf there exists a sequence
G,, G;, -++ of bases for the topology of S such that if g,,¢., --+ is a
sequence such that, for each m, g, belongs to G, and §,., is a subset
of ¢., then there exists a point P in each g, such that the collection
of terms of ¢, 9. --+ ts a base at P.

Proof. Suppose V is a monotonically complete base of countable
order for S. There exists a sequence H,, H,, --- of well-ordered sub-
collections of V covering S such that these conditions are satisfied:

(1) For each n and & in H, there exists a point P,, belonging
to 2 such that no element of H, precedes % and contains P,,,.

(2) If n <k, the closure of the first element % of H, containing
the point P is a subset of the first element A’ of H, containing P;
and if P is in a proper subset of %/, h is a proper subset of 2’. By
an argument similar to that used in the proof of Theorem 1 of |12],
it follows that the collections G, = H, + H,., + --- are bases for S.
If 9,9, --+ is a sequence as in the statement of Theorem 1, there
exists a first &, in H, that includes a term of g¢,, g, ---. For each
n, there exists 7 > n + 1 such that g; is a subset of &, and £, .,.
For some k = j, g; belongs to H,. Let P denote the point P,,. If
h is the first element of H, to contain P then % includes g;. Thus
h does not precede h,. Since h, contains P it follows that % = h,.
Similarly, %,., is the first element of H,., to contain P and thus 7, .,
is a subset of &,. If h, = h,., for some », then %, = {P} for some
point P, and thus g, = {P} for some k, and {g,} is a base at P. If
h, # h,.,, for any n, the terms of &, h,, --- form a monotonic sub-
collection of V and thus there exists a point P common to each #,.
Since k.., is a subset of k,, P is in each h,. If D is open and contains
P, there exists some h, which is a subset of D and thus some g,
is included in D. Hence P is in g, for all &, and since g, is a subset
of g,_, for all £ > 1, it follows that P is in each g,. Since the 7,’s
form a base at P so do the g,’s.

If G, G, --- is a sequence as in the statement of Theorem 1 there
exists a sequence H,, H,, --- of well-ordered collections covering S
such that for each n: (1) H, is a subcollection of G,. (2) Each element
k of H, contains a point belonging to no predecessor of 4 in H,. (3)
If n <k and P is a point, the closure of the first element of H,
containing P is a subset of the first element of H, doing so. V =
H + H,+ --- is a base for S and can be shown to be a base of
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countable order by an argument used in Theorem 2 of [12]. A technique
similar to one employed there and also in the preceding paragraph,
shows that V is monotonically complete.

THEOREM 2. A regular T,-space having a monotonically complete
base of countable order is an open continuous image of a complete
metric space.

Proof. Let S denote a regular T,-space having a monotonically
complete base of countable order. By Theorem 1 there exists a sequence
G,, G,, --- of bases for S with the property stated in that theorem.
Form the Baire space M [6] over the collections G,, G, ---. The
elements of M are sequences & = (¢, ¢,, *++) Where g, belongs to G,.
If £=1(9, 9, ---) and & = (g1, g5, ---) the distance p(&, &) is defined
to be 1/k if there exists a first positive integer %k such that g, = g¢;.
Otherwise p(&, &) = 0. Designate by O,,..,, the collection of all se-
quences (al, a}, -++) such that a;,=a},9=1,---, k. Let W denote
the collection of all elements in M of the form (g, g,, --+) where for
each n, §,., is a subset of g,. Then, by the condition on G, G,, ---,
there exists a unique point P common to the terms of g, g, +--. If
& =(¢, 0., +++) is in W, define f¢ to be the unique point P common
to the ¢,’s. If P is a point of S, by regularity there exists an
element & of W such that P is common to the terms of &. Hence f
is a mapping of W onto S. Suppose W intersects the set O,..,,.
Then g;., is a subset of g, for all ¢« <k — 1. Clearly, (W-O,,...,) is
a subset of g,. If P is an element of g,, there exists ¢,.,, Giss -
such that g,,, is a subset of g,.,, for all n=1. Hence f(W-O,,.., )=
gi. Since the collection of all sets W.0,.., is a base for W and
by the property of G, G,, ---, f is open and continuous on W. (This
argument is related to one used by Ponomarev [10].)

Suppose P, P,, --- is a sequence of points of W satisfying the
Cauchy convergence criterion. For each n, there exists a positive
integer m, such that o(P,, P;) < 1/n, provided k,j = m,. It may be
assumed that m,,, > m, for every n. Let a?, a?, ---,a? denote the
first n coordinates of P, . Let a, denote a; for each m. Then if
k = m,, the first n coordinates of P, are a, +--,a,. For if n =1,
a, = a; is the first coordinate of P, . If k> m,, then o(P, P,) < 1,
and thus a, is the first coordinate of P,. Suppose the statement is
true for n. If k=m,,,, then o(P, P,, ) <1l/(n+1). Since
M, > m,, the first n coordinates of P, ., are a, ---,a,, by the as-
sumption, and the (n + 1)* coordinate is a,,,. Let P denote (aj, @, --*).
It follows that P is the sequential limit point of P,, P,, ---. Moreover,
since P, is in W, the coordinates a,, a,, ---, a, satisfy the condition
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that @,., is a subset of a, for all k < n — 1. Since this is true for
all », it follows that P is in W, and thus W is complete with respect
to p.

REMARK. From the proof of the above theorem it may be seen
that the complete metric space of the theorem may be taken to be
of zero dimension and of the same weight as the image space. (The
weight of a topological space is the minimum cardinal number m such
that the space has a base of power m [1].)

3. The characterization theorem. In [11] Worrell and Wicke
define a \-base for a topological space as a base B of countable order
for the space such that if K is a perfectly decreasing monotonic sub-
collection of B, there exists a point P such that any open set con-
taining P includes an element of K. A regular T,-space has a \-base
if and only if it has a monotonically complete base of countable order
[11]. A principal theorem of [11] is that an open continuous (essen-
tially) T, image of a space having a \-base also has a \-base.

THEOREM 3. A regular T,-space is an open continuous image
of a complete metric space if and only if it has a monotonically
complete base of countable order,

Proof. The sufficiency follows from Theorem 2. The necessity
is a consequence of the theorems cited in the paragraph preceding the
statement of Theorem 3, and the facts that a regular T,-space is T,
and that a complete metric space has a \-base.

THEOREM 4. The following conditions on a regular Ty-space are
equivalent.

(a) The space has a monotonically complete base of countable
order.

(b) The space satisfies Aronszajn’s axiom [4, p. 231].

(¢) The space has a \-base.

(d) The space is an open continuous image of a complete metric
space.

Proof. The equivalence of (a), (b), and (c¢) is stated in [11],
and may be established by methods used in the proof of Theorem 1
above. Theorem 3 above shows the equivalence of (a) and (d).

By using techniques similar to those used above, the following
theorem may be proved. (The sufficiency is a joint result of Worrell
and Wicke given in [11].)
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THEOREM 5. A Ti-space S has a base of countable order if and
only if there exists a metric space (M,d) and an open continuous
mapping f of M onto S such that for each x in S, f=(x) is complete
with respect to the metric d.

This result and a theorem of Arhangel’skii [3] imply the following
theorem of Michael [8]:

If f is an open continuous mapping of a metric space E onto a
T, paracompact space F such that f~'(y) is complete for every ¥ in
F, then F is metrizable.

REFERENCES

1. P. S. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts,
Verh. Nederl. Akad. Wetensch. Afd. Natuurk. 14 (1929), 1-96.

2. A. Arhangel’skii, On mappings of metric spaces, Soviet Math. Dokl. 3 (1962),
953-956; translation of Dokl. Akad. Nauk SSSR 145 (1962), 245-248.

3. ——, Some metrization theorems, Uspehi Mat. Nauk (113) 18(1963), 139-145, (Russian).
4. N. Aronszajn, Uber die Bogenverkniipfung in topologischen Riumen, Fund. Math.
15 (1930), 228-241.

5. E. éech, On bicompact spaces, Ann. of Math. 38 (1937), 823-844.

6. F. Hausdorff, Mengenlehre, Berlin-Leipzig, 3rd ed., 1935.

7. J. L. Kelley, General Topology, Princeton, 1955.

8. E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 27
(1959), 647-651.

9. R. L. Moore, Foundations of Point Set Theory, Revised Edition, Amer. Math. Soc.
Coll. Pub. XIII (1962).

10. V. I. Ponomarev, Axioms of countability and continuous mappings, Bull. Polon.
Acad. Sci., Sér. Sci. Math. Astron. & Phys. 7 (1960), 127-133, (Russian).

11. H. H. Wicke and J. M. Worrell, Jr., Open continuous mappings of spaces having
bases of countable order, Abstract 628-4, Notices of the Amer. Math. Soc. 12 (1965),
803. (To appear in Duke Math. J. 1967.)

12, J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological
spaces, Canad. J. Math. 17 (1965), 820-830.

Received August 23, 1966. This work was supported by the United States Atomic
Energy Commission.

SANDIA LABORATORY
ALBUQUERQUE, NEW MEXICO








