SOME PROPERTIES OF SEQUENCES, WITH AN APPLICATION TO NONCONTINUABLE POWER SERIES

F. W. CARROLL

For a real sequence $f=\{f(n)\}$ and positive integer N, let F^N denote the sequence of N-tuples $\{(f(n+1),\cdots,f(n+N))\}$. A functional equation method due to Kemperman is used to obtain a sufficient condition on s in order that s^N have an independent N-tuple among its cluster points. If a bounded s has the latter property, and if g=rs, where $r(n)\to\infty$ and $r(n+1)/r(n)\to 1$ as $n\to\infty$, then there is a subsequence S of the sequence of positive integers such that, for almost all real α , the restriction of αg^N to S is uniformly distributed (mod 1) in the N-cube.

Let F be an analytic function whose Maclaurin series has bounded coefficients $\{a_n\}$ which satisfy the additional requirement

$$\lim_{M o \infty} \inf_{0 \le k < \infty} \sum_{n=k}^{k+M} |a_n| = \infty$$
 .

If $a_n = |a_n| \exp \{2\pi i f(n)\}$, then the density (mod 1) of f^N for each N is sufficient in order that F have the unit circle as a natural boundary. Hence, a metric result for noncontinuable series is obtained from the results for sequences.

1. Notation. For x real, let ((x)) = x - [x], and $e(x) = \exp(2\pi i x)$. h_1, \dots, h_N will denote an N-tuple of integers, not all of which are zero. The sequence of nonnegative integers will be denoted by Z, and subsequences of Z by S_1 , S_2 , etc. For a real sequence f, we denote by Δf the sequence $\{f(n+1) - f(n)\}$ and

$$\Delta^{j+1}f = \Delta(\Delta^j f)$$
, $(j = 1, 2, \cdots)$

2. The property (PN).

DEFINITION. A bounded sequence s of real numbers will be said to have *property* (PN) if there is an independent N-tuple among the cluster points of s^N . In other words, s has property (PN) if there is a subsequence S of Z such that for every N-tuple h_1, \dots, h_N of integers not all zero, there holds

(2.1)
$$\lim_{n\to\infty} |h_1 s(n+1) + \cdots + h_N s(n+N)| > 0$$
, $(n \in S)$.

We shall be interested in sequences s of the following form:

$$s(n) = \varphi(\psi(n)), \qquad (n \in Z),$$

where φ is a function of period 1 with at most a nowhere dense set of points of discontinuity, and ψ has the property (QN).

(QN) There exists a subsequence S_1 of Z such that

(2.3) (i)
$$\Delta^j \psi(n)$$
 converges (mod 1) for $n \to \infty$, $n \in S_1$ $(j=2,\cdots,N)$

(ii) $\{(((\psi(n)), ((\Delta \psi(n))): n \in S_1\} \text{ is not nowhere dense.}\}$

THEOREM 2.1. Let s be of the form (2.2), where φ and ψ have the properties listed above. Then either s has property (PN), or else φ agrees on some interval $I \subset [0,1]$ with a polynomial of degree N-2 at most.

Proof. Under the conditions on φ and ψ , it is possible to obtain a subsequence S_2 of S_1 and an open disk D in the plane such that

(2.4) (i)
$$\lim_{n\to\infty} \varDelta^j \psi(n) = \tau_j \pmod{1}$$
, $(n\in S_2)$, $(j=2,\cdots,N)$,

- (ii) $\{(((\psi(n)), ((\Delta \psi(n))): n \in S_2\} \text{ is dense in } D$,
- (iii) for every (τ_0, τ_1) in D, and every p, $1 \le p \le N$, the point

$$au_{\scriptscriptstyle 0} + p au_{\scriptscriptstyle 1} + \sum\limits_{j=2}^p \left(egin{array}{c} p \ j \end{array}
ight)\! au_{j}$$

is a point of continuity for φ .

For each (τ_0, τ_1) in D, a subsequence $S_3 = S_3(\tau_0, \tau_1)$ of S_2 can be chosen so that the corresponding subsequence of (2.4 (ii)) converges to (τ_0, τ_1) . In this case, as $n \to \infty$, $n \in S_3$, one has for every h_1, \dots, h_N ,

$$egin{aligned} \lim_{n o\infty}\sum_{p=1}^N h_p s(n+p) &= \lim_{n o\infty}\sum_{p=1}^N h_p arphi(\psi(n)) \ &+ p \varDelta \psi(n) + \sum_{j=2}^p igg(rac{p}{j}igg) arDelta^j \psi(n)) \end{aligned}$$

so that

(2.5)
$$\lim_{n\to\infty} \sum_{p=1}^{N} h_p s(n+p) = \sum_{p=1}^{N} h_p \varphi \left(\tau_0 + p \tau_1 + \sum_{j=2}^{p} {p \choose j} \tau_j \right), \quad (n \in S_3).$$

Suppose now that s does not have property (PN). Then for each (τ_0, τ_1) in D, there is an N-tuple h_1, \dots, h_N such that the right hand member of (2.5) is zero. Hence D is a countable union of closed sets

$$F = F(h_1, \dots, h_N) = \{(\tau_0, \tau_1) \in D: (2.5) \text{ vanishes} \}.$$

Some F, then, must contain an open subdisk D_1 , with center

 (τ'_0, τ'_1) . That is, there exists an N-tuple h_1, \dots, h_N of integers not all zero with the property that for all sufficiently small positive h and k,

$$\sum\limits_{p=1}^{N}h_{p}arphi\Bigl(h\,+\,pk\,+\, au_{_{0}}^{\prime}+\,p au_{_{1}}^{\prime}+\sum\limits_{_{j=2}}^{p}\Bigl(\,rac{p}{j}\Bigr)\! au_{_{j}}\Bigr)=0$$
 .

The assertion of the theorem follows upon taking

$$arphi_p(x) = h_p arphi \Big(x + au_0' + p au_1' + \sum_{j=2}^p igg(rac{p}{j} igg) au_j \Big)$$

in the following lemma, a weak version of one due to Kemperman [4, p. 41]. The proof is included for completeness.

LEMMA. Let a > 0, and let $\varphi_1, \dots, \varphi_N$ be real functions, with φ_j defined and continuous on $I_j = (-(j+1)a, (j+1)a), (j=1, \dots, N)$. Suppose that for all x, y in (-a, a), there holds

(2.6)
$$\sum_{i=1}^{N} \varphi_{j}(x+jy) = 0.$$

Then φ_i is equal on I_i to a polynomial of degree N-2 at most.

Proof. We may suppose that $N \ge 2$ (the case N = 1 is trivial), and that the lemma holds for N - 1. Let 0 < b < a, and let $I'_j = (-(j+1)b, (j+1)b)$.

Next, we choose and keep fixed a number h, $0 < h < \min(b, a - b)$. For this h, and $j = 1, \dots, N$, let

$$\widetilde{\varphi}_j(x) = \varphi_j(x + (1 - j/N)h) - \varphi_j(x),$$
 $(x \in I'_j)$.

We note that each $\widetilde{\varphi}_j$ is continuous, and $\widetilde{\varphi}_N \equiv 0$. Moreover, if x, y are in (-b, b), then x, y, x + h, and y - h/N are in (-a, a). Thus, for all x, y in (-b, b), we have

$$\sum\limits_{j=1}^{N-1} \widetilde{arphi}_{j}(x+jy) = \sum\limits_{j=1}^{N} arphi_{j}(x+h+j(y-h/N)) - \sum\limits_{j=1}^{N} arphi_{j}(x+jy) = 0$$
 .

The induction hypothesis implies that, for $j=1,\cdots,N-1,\widetilde{\varphi}_j$ is a polynomial of degree N-3 at most on I_i' . Hence φ_j is, on I_j' , the sum of a polynomial of degree N-2 at most and a function of period (1-j/N)h. But such a representation is given for every sufficiently small positive h, which, with the continuity of φ_j , implies that φ_j is a polynomial of degree N-2 at most on I_j' , $(1 \le j \le N-1)$. From the arbitrariness of b, φ_j is such a polynomial on I_j . Finally, (2.6) shows that φ_N is also such a polynomial on I_N .

In a previous paper [1], results of v. d. Corput were used to

obtain various sufficient conditions on a real sequence ψ in order that ψ satisfy condition (I):

- (I) There exists a sequence S such that $\lim \Delta^{j}\psi(n)$ $(n \in S)$ exists for all $j \geq r$, while $\{(\psi(n), \Delta\psi(n), \cdots, \Delta^{r-1}\psi(n)): n \in S\}$ is uniformly distributed (mod 1) in the r-dimensional unit cube.
- (I) clearly implies that ψ has property (QN) for every $N \ge 2$. The reader is referred to the paper for details and proofs.

3. A metric result for uniform distribution in the N-cube.

THEOREM 3.1 Let $g = \{g(n): n \in Z\}$ be a sequence of real numbers. Let there exist a subsequence S_{\circ} of Z such that, for every N-tuple h_1, \dots, h_N of integers not all zero there holds

(3.1)
$$\lim |\sum_{p=1}^N h_p g(n+p)| = \infty , \qquad \text{as } n \to \infty , \quad n \in S_0 .$$

Then there exists a subsequence S of S_0 such that, for almost all real α , the sequence $(\alpha g^N) \mid S$ is uniformly distributed (mod 1) in the N-cube.

Proof. Let the set of all such N-tuples be ordered, with, say, h'_1, \dots, h'_N as the first. Let a subsequence $S_1 \subset S_0$ be taken such that

$$\sum_{n=1}^{N} h'_{p} \{g(n+p) - g(m+p)\}$$

is either greater than 1 for every n, m in S_1 , with n > m, or else is less than -1 for every such n and m. Successively extracting subsequences $S_1 \supset S_2 \supset \cdots$ in this way, and then using a diagonal procedure, one finally obtains a sequence S such that, for every N-tuple h_1, \dots, h_N , there is an $m_0 = m_0(h_1, \dots, h_N)$ such that one has either

(3.2)
$$\sum_{p=1}^{N} h_p \{g(n+p) - g(m+p)\} \ge 1$$

for all n and m in S with $n > m \ge m_0$ or else

(3.3)
$$\sum_{p=1}^{N} h_p \{g(n+p) - g(m+p)\} \leq -1$$

for all such n and m.

By a well-known result of Weyl [6, p. 348], either condition (3.2) or (3.3) implies that, for almost all real α , the sequence

$$\alpha \sum_{p=1}^{N} h_p g(n+p) \qquad (n \in S)$$

is uniformly distributed (mod 1). There being only countably many N-tuples, it follows that, for almost all α , (3.4) is uniformly distributed (mod 1) for every N-tuple h_1, \dots, h_N . But this shows [2, p. 66] that for almost all α the sequence $(\alpha g^N) \mid S$ is uniformly distributed (mod 1) in the N-cube.

It is easy to see that if $\theta > 1$ is a transcendental number and $g(n) = \theta^n$, then Theorem 3.1 is applicable. The next result shows the less obvious fact that Theorem 3.1 also applies if, for instance, $g(n) = n^3 \log n \sin n^2$.

THEOREM 3.2. Let $g = \{g(n): n \in z\}$ be of the form

$$(3.5) g(n) = r(n)s(n), n \in Z,$$

where s has property (PN), while

(3.6)
$$\lim r(n) = \infty$$
, $\lim (r(n+1)/r(n)) = 1$.

Then there is a subsequence S_0 of Z such that (3.1) holds for every N-tuple h_1, \dots, h_N of integers not all zero.

Proof. For $p = 1, 2, \dots, N$, it follows from (3.6) that

$$r(n+p) = r(n)(1+0(1))$$
, as $n \to \infty$.

Therefore we have

(3.7)
$$g(n+p) = r(n)s(n+p)(1+o(1))$$
, as $n \to \infty$, $p = 1, \dots, N$.

Since s has property (PN), there exists a subsequence S_0 of Z such that

(2.1)
$$\lim_{n\to\infty} |h_1 s(n+1) + \cdots + h_N s(n+N)| > 0$$
, $(n \in S_0)$

for all N-tuples h_1, \dots, h_N of integers not all zero. But (3.6), (3.7), and (2.1) imply (3.1).

4. An application to noncontinuable power series. Perry [5] has proved that, for every real sequence $f = \{f(n): n \in Z\}$, there exists a sequence of moduli $\{|a_n|: n \in Z\}$ such that the power series

$$(4.1) \qquad \qquad \sum_{n=0}^{\infty} |a_N| e(f(n)) z^n$$

has radius of convergence 1 and the analytic function it represents can be continued analytically across a semicircle of the unit circle. However, if the additional requirements

$$|a_n| = 0(1) \qquad \text{as } n \to \infty$$

and

(4.3)
$$\lim_{N\to\infty} \inf_{0\le k < \infty} \sum_{n=k+1}^{k+N} |a_n| = \infty$$

are imposed, then there are conditions on f sufficient that (4.1) represent a function with |z| = 1 as its natural boundary. Some such conditions were given in [1]. Theorem 4 gives a metric result in this direction.

THEOREM 4. Let $\{|a_n|: n \in Z\}$ satisfy (4.2) and (4.3). Let g be a real sequence which, for each N, satisfies the hypothesis of Theorem 3.1. For each real α , let

$$(4.4) \hspace{1cm} F_{\alpha}(z) = \sum_{n=0}^{\infty} |a_n| \, e(\alpha g(n)) z^n, \hspace{1cm} |z| < 1 \, .$$

Then the set of α for which F_{α} can be continued across an arc of the unit circle has measure zero.

Example. $\sum e(\alpha n \sin n^2) z^n$ has |z| = 1 as its natural boundary for almost all a.

For $N=2,3,\cdots$, let A_N be the set of those real α for which αg^N is dense (mod 1) in the unit N-cube.

By Theorem 3.1, A_N contains almost all α , and it follows that almost all α are in A_N for every N. For each such α , and each $z_0 = e(\theta_0)$, there holds

(4.5)
$$\limsup_{k\to\infty} |\sum_{k+1}^{k+N} a_n e(\alpha g(n) + n\theta_0)| \ge \liminf_{k\to\infty} \sum_{k+1}^{k+N} |a_n|.$$

In view of (4.3), (4.5) shows that the partial sums of the series in (4.4) are unbounded at z_0 . By (4.2) and a well-known theorem of Fatou [3, p. 391], it follows that z_0 is a singularity for F.

REFERENCES

- 1. F. W. Carroll, On some classes of noncontinuable analytic functions, Trans. Amer. Math. Soc. **94** (1960), 74-85.
- 2. J. W. Cassells, An introduction to Diophantine approximation, Cambridge Tract 45, Cambridge Univ. Press, 1957.
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400.
 J.H.B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28-56.
- 5. R. L. Perry, A theorem on power series whose coefficients have given arguments, J. Lond. Math. Soc. **35** (1960), 172-176.
- 6. H. Weyl, Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.

Received September 19, 1966. This research was supported by a grant from the National Science Foundation.

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO