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SOME PROPERTIES OF SEQUENCES,
WITH AN APPLICATION TO

NONCONTINUABLE POWER SERIES

F. W. CARROLL

For a real sequence / = {f(n)\ and positive integer N, let
FN denote the sequence of iV-tuples {{fin + 1), -,f(n+N))}.
A functional equation method due to Kemperman is used to
obtain a sufficient condition on s in order that sΛ7~ have an
independent iV-tuple among its cluster points. If a bounded
s has the latter property, and if g — rs, where r(n) —> oo and
r(n + l)/r(n)—> 1 as n-> oo9 then there is a subsequence S of
the sequence of positive integers such that, for almost all real
a, the restriction of agN to S is uniformly distributed (mod 1)
in the AΓ-cube.

Let F be an analytic function whose Maclaurin series has bounded
coefficients {an} which satisfy the additional requirement

lim inf V, I α, I =

If an = I an I exp {2πif(n)}, then the density (mod 1) of fN for each N
is sufficient in order that F have the unit circle as a natural boundary.
Hence, a metric result for noncontinuable series is obtained from the
results for sequences.

1* Notation. For x real, let ((x)) = x — [x], and e(x) — exp (2πίx).
hi9 — ,hN will denote an iV-tuple of integers, not all of which are
zero. The sequence of nonnegative integers will be denoted by Z,
and subsequences of Z by S19 S2, etc. For a real sequence /, we
denote by Δf the sequence {f(n + 1) — f(n)} and

2. The property (PN)*

DEFINITION. A bounded sequence s of real numbers will be said
to have property (PN) if there is an independent ΛΓ-tuple among the
cluster points of sN. In other words, s has property (PN) if there is
a subsequence S of Z such that for every iV-tuple hu , hN of integers
not all zero, there holds

(2.1) lim I hxs(n + 1) + . . . + hNs(n + N) \ > 0 , (neS) .

n—>oo

We shall be interested in sequences s of the following form:
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(2.2) s(n) = φ(f (n)) , (neZ),

where φ is a function of period 1 with at most a nowhere dense set
of points of discontinuity, and ψ has the property (QN).

(QN) There exists a subsequence Si of Z such that

(2.3) (i) Ajψ(n) converges (modi) for n—> oo 9

neSL (i = 2, — , -ZSΓ)

(ii) {(((ψ(n)) , ((Jτ/τ(w))): n e SJ is not nowhere dense.

THEOREM 2.1. Let s be of the form (2.2), where φ and ψ have
the properties listed above. Then either s has property (PN), or else
φ agrees on some interval ί c [ 0 , 1 ] with a polynomial of degree N-
2 at most.

Proof. Under the conditions on φ and ψ, it is possible to obtain
a subsequence S2 of Sλ and an open disk D in the plane such that

(2.4) ( i ) lim Jty(n) = r, (modi) , (neS2), (j = 2, . . . , N) ,
n—*oo

(ii) {(((ψ(n)) , {{Δψ{n)))\ n e S2} is dense in D ,

(iii) for every (τ0, rx) in D, and

every p, 1 ^ p ^ N, the point

3 ' J

is a point of continuity for 9?.
For each (τ0, τx) in D, a subsequence S3 = Ss(τ0, τx) of S2 can be

chosen so that the corresponding subsequence of (2.4 (ii)) converges to
(τ0, τL). In this case, as n—> 00, neS3, one has for every 7 ,̂ « , ^ ,

lim Σ ^^^(^ + p) = lim Σ hPφ(Ψ(n)
1 l

so that

(2.5) lim Σ λ,8(» + p) = Σ Λ,9>(r0 + p ^ + Σ ( ? )r,-) , (^ 6 S,) .

Suppose now that s does not have property (PN). Then for each
(τ0, Γi) in D, there is an iV-tuple hly , Λ^ such that the right hand
member of (2.5) is zero. Hence D is a countable union of closed sets

F = F(hlf , hN) - {(τ0, r j e JD: (2.5) vanishes} .

Some i*7, then, must contain an open subdisk Dl9 with center
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(τj, τ[). That is, there exists an JV-tuple hlf ,hN of integers not
all zero with the property t h a t for all sufficiently small positive k
and k,

Σ*Kφ(h + pfc + TJ + pτ[ + Σ ( ? V ) - 0 .

The assertion of the theorem follows upon taking

φp(x) = ^ ( a + rj + pτί +

in the following lemma, a weak version of one due to Kemperman [4,
p. 41], The proof is included for completeness.

LEMMA. Let a > 0, and let φu •••,<?># be real functions, with
φά defined and continuous on Iβ = (— (i + l)α, (j +l)α), 0' = 1, , N).
Suppose that for all x, y in ( — α, α), there holds

(2.6) Σ 9>i(s + 3V) = 0 .
3=1

Then φά is equal on I3 to a polynomial of degree N-2 at most.

Proof. We may suppose that N ^ 2 (the case N = 1 is trivial),
and that the lemma holds for N — 1. Let 0 < b < α, and let i*̂  =
( - ( i + 1)6, ( i + 1)6).

Next, we choose and keep fixed a number h> 0 < h < min (6, α — 6).
For this Λ, and jί = 1, , N, let

φό{x) = ^(α? + (1 - i/iV)/ )̂ - 9>,(α;), (α? e JJ) .

We note that each φi is continuous, and φN = 0. Moreover, if x, y
are in ( — 6, 6), then x,y,x + h, and 2/ — h/N are in ( — a, a).
Thus, for all x,y in ( — 6, 6), we have

ΣΦiix + 3v) = Σ 9>*(α + λ + j(y - λ/JV)) - Σ <Pi(χ + i») = o .

The induction hypothesis implies that, for j = 1, , iV — 1, ^ is a
polynomial of degree N — 3 at most on /j . Hence φ y is, on /_-, the
sum of a polynomial of degree N — 2 at most and a function of period
(1 — j/N)h. But such a representation is given for every sufficiently
small positive h, which, with the continuity of <pj9 implies that φό is
a polynomial of degree N — 2 at most on Γά, (1 <Ξ j ^ iV — 1). From
the arbitrariness of 6, 9^ is such a polynomial on I}. Finally, (2.6)
shows that φN is also such a polynomial on IN.

In a previous paper [1], results of v. d. Corput were used to
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obtain various sufficient conditions on a real sequence ψ in order that
ψ satisfy condition (I):

(I) There exists a sequence S such that lim Jjψ(n) (n e S) exists
for all j ;> r, while {(ψ(n), Λψ(n), , Δr"1ψ{n)): ne S} is uniformly
distributed (mod 1) in the r-dimensional unit cube.

(I) clearly implies that ψ has property (QN) for every N ^ 2.
The reader is referred to the paper for details and proofs.

3* A metric result for uniform distribution in the iV-cube*

THEOREM 3.1 Let g = {g(n): ne Z} be a sequence of real numbers.
Let there exist a subsequence So of Z such that, for every N-tuple
h19 * ,hN of integers not all zero there holds

N

(3.1) lim I Σ hpg(n + p) | = co , as n -> oo 9 neS0 .

Then there exists a subsequence S of SQ such that, for almost all real
a, the sequence (agN) \ S is uniformly distributed (mod 1) in the N-
cube.

Proof. Let the set of all such JV-tuples be ordered, with, say,
h[, , hr

N as the first. Let a subsequence S1 c So be taken such that

Σ K{d{n + p) - g(m + p)}

is either greater than 1 for every n, m in Sly with n > m, or else is
less than —1 for every such n and m. Successively extracting subse-
quences S1 Z) S2 Z) in this way, and then using a diagonal procedure,
one finally obtains a sequence S such that, for every N-tuple hu , hN,
there is an m0 = mo(fei, , hN) such that one has either

(3.2) Σ K{9(n + p)- g(m + p)} ^ 1
p = l

for all n and m in S with n > m ^ m0

or else

(3.3) Σ K{9{n + P)- 9{m + p)} ^ - 1
p = l

for all such n and m.
By a well-known result of Weyl [6, p. 348], either condition (3.2)

or (3.3) implies that, for almost all real a, the sequence

(3.4) af^hpg(n + p) (neS)
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is uniformly distributed (mod 1). There being only countably many
iV-tuples, it follows that, for almost all a, (3.4) is uniformly distributed
(modi) for every ΛΓ-tuple hu •• ,/&ΛΓ. But this shows [2, p. 66] that
for almost all a the sequence (agN) \ S is uniformly distributed (mod 1)
in the iV-cube.

It is easy to see that if θ > 1 is a transcendental number and
g(n) — θn, then Theorem 3.1 is applicable. The next result shows the
less obvious fact that Theorem 3.1 also applies if, for instance, g(n) =
nz log n sin n2.

THEOREM 3.2. Let g = {g(n):nez} be of the form

(3.5) g(n) = r(n)s(n) , neZ ,

where s has property (PN), while

(3.6) lim r(n) = oo , lim (r(n + ί)/r(n)) = 1 .

Then there is a subsequence So of Z such that (3.1) holds for every
N-tuple /&!, , hN of integers not all zero.

Proof. For p = 1, 2, . , N, it follows from (3.6) that

r(n + p) = r(n)(l + 0(1)) , as n —> co .

Therefore we have

(3.7) #(w + ί>) = r(w)s(w + p)(l + o(l)) , as n—> oo , ^ = 1, , iSΓ.

Since s has property (PN), there exists a subsequence SQ of ^ such that

(2.1) lim I hXn + l) + . . . + hNs(n + N) \ > 0 , (neS0)

for all JV-tuples hu — ,hN of integers not all zero. But (3.6), (3.7),
and (2.1) imply (3.1).

4* An application to noncontinuable power series* Perry [5]
has proved that, for every real sequence / = {f(ri)\ ne Z}, there exists
a sequence of moduli {\an\: ne Z} such that the power series

(4.1) Σ*\aN\e(f(n))z*
n = Q

has radius of convergence 1 and the analytic function it represents
can be continued analytically across a semicircle of the unit circle.
However, if the additional requirements

(4.2) I an I = 0(1) as n —> co
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and
k + N

(4.3) lim inf Σ | an

are imposed, then there are conditions on /sufficient that (4.1) represent
a function with | z \ — 1 as its natural boundary. Some such conditions
were given in [1]. Theorem 4 gives a metric result in this direction.

THEOREM 4. Let {\an\:neZ} satisfy (4.2) and (4.3). Let g be a
real sequence which, for each N, satifies the hypothesis of Theorem
3.1. For each real a, let

(4.4) Fa(z) = Σ I °>n I e{ag{n))z\ \ z \ < 1 .

Then the set of a for which Fa can be continued across an arc of
the unit circle has measure zero.

Example. Σ β{an sin n2) zn has | z \ = 1 as its natural boundary
for almost all a.

For N = 2, 3, , let A^ be the set of those real a for which
agN is dense (mod 1) in the unit JV-cube.

By Theorem 3.1, AN contains almost all a, and it follows that
almost all a are in AN for every N. For each such α, and each z0 = e(θ0),
there holds

k+N k+N

(4.5) lim sup | Σ ctne((xg(n) + nθ0) \ ̂  lim inf Σ I an I
fc-^oo k + 1 A;->oo jfc + l

In view of (4.3), (4.5) shows that the partial sums of the series in
(4.4) are unbounded at z0. By (4.2) and a well-known theorem of
Fatou [3, p. 391], it follows that z0 is a singularity for F.
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