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SOME PROPERTIES OF SEQUENCES,
WITH AN APPLICATION TO
NONCONTINUABLE POWER SERIES

F. W. CARROLL

For a real sequence f = {f(n)} and positive integer N, let
F¥ denote the sequence of N-tuples {(f(n + 1), --+, fin+N))}.
A functional equation method due to Kemperman is used to
obtain a sufficient condition on s in order that s” have an
independent N-tuple among its cluster points, If a bounded
s has the latter property, and if g = rs, where 7(n)— co and
r(n + 1)/r(n) — 1 as n— oo, then there is a subsequence S of
the sequence of positive integers such that, for almost all real
a, the restriction of ag? to S is uniformly distributed (mod 1)
in the N-cube,

Let F be an analytic function whose Maclaurin series has bounded
coefficients {a,} which satisfy the additional requirement

. . k+M

lim inf 3 la,| = .

Moo 0Sk<ce n=Ek
If a, = |a,|exp{27if(n)}, then the density (mod1l) of ¥ for each N
is sufficient in order that F" have the unit circle as a natural boundary.
Hence, a metric result for noncontinuable series is obtained from the
results for sequences.

1. Notation. Forxreal,let ((z)) = x — [x], and e(x) = exp (2rix).
Ry, «++, by will denote an N-tuple of integers, not all of which are
zero. The sequence of nonnegative integers will be denoted by Z,
and subsequences of Z by S,, S,, ete. For a real sequence f, we
denote by 4f the sequence {f(n + 1) — f(n)} and

AHf=44f), G=1,2,--)
2. The property (PN).

DEFINITION. A bounded sequence s of real numbers will be said
to have property (PN) if there is an independent N-tuple among the
cluster points of s¥. In other words, s has property (PN) if there is
a subsequence S of Z such that for every N-tuple &,, - -, hy of integers
not all zero, there holds

(2.1) lim | Zs(m + 1) + -+« + hys(n + N)| >0, (meS).

We shall be interested in sequences s of the following form:
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(2.2) s(n) = p(¥(n)) , (nez),

where ¢ is a function of period 1 with at most a nowhere dense set
of points of discontinuity, and + has the property (QN).
(QN) There exists a subsequence S, of Z such that

(2.3) (i) A’y(n) converges (mod1l) for m— o,
neS, (G=2,---,N)
(i) {(((¥(n)) , ((dy(n))): me S} is not nowhere dense.

THEOREM 2.1. Let s be of the form (2.2), where ¢ and + have
the properties listed above. Then either s has property (PN), or else
@ agrees on some interval I [0, 1] with a polynomial of degree N-
2 at most.

Proof. Under the conditions on ¢ and v, it is possible to obtain
a subsequence S, of S, and an open disk D in the plane such that

(2°4) ( i ) lim AJ'IIF(’I?/) =7 (mOd 1) ’ (n € S2) ’ (.7 = 2, ) N) ’

(i) {(((y(n)) , ((4y(n))): me S;} is dense in D,
(iii) for every (z,, 7)) in D, and
every p, 1 < p < N, the point

(D
To+'p71+z<‘>fj
i=\J

is a point of continuity for o.

For each (z,, 7,) in D, a subsequence S; = Sy(7,, 7,) of S, can be
chosen so that the corresponding subsequence of (2.4 (ii)) converges to
(zs, 7). In this case, as n— o, neS;, one has for every h,, ---, hy,

lim 3% h,s(n + p) = lim 3} h,p((n)

n—reo p=1

+ payiw) + 3 (2 )avm)
so that

(2.5) lim EV‘J h,s(n + p) = }ih,,go(ro + pt, + ;:]2 <€ >rj> , (nesS;) .

n—roo p=1

Suppose now that s does not have property (PN). Then for each
(zy, 71) in D, there is an N-tuple A, ---, hy such that the right hand
member of (2.5) is zero. Hence D is a countable union of closed sets

F = F(h, -+, hy) = {(z,, 7.) € D: (2.5) vanishes} .

Some F, then, must contain an open subdisk D, with center
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(s, 7). That is, there exists an N-tuple 4, ---, hy of integers not
all zero with the property that for all sufficiently small positive &
and k,

N
Zj@@(h + pk + 75 + pri + i(?)%) =0.
p= =
The assertion of the theorem follows upon taking
o (P
Pp(X) = hﬂ)(% + 74+ pT] + 22 < ) )r,)
=

in the following lemma, a weak version of one due to Kemperman [4,
p. 41]. The proof is included for completeness.

LEMMA. Let a >0, and let @, -+-, Py be real functions, with
@; defined and continuouson I; = (— (§ + La, (§ +1)a),(j =1, ---, N).
Suppose that for all x, y in (—a, a), there holds

N
(2.6) 2 Pyl + Jy) = 0.
=
Then @; is equal on I; to a polynomial of degree N-2 at most.

Proof. We may suppose that N = 2 (the case N =1 is trivial),
and that the lemma holds for N — 1. Let 0 < b < a, and let I; =
(—=(7 + b, (7 + 1)b).

Next, we choose and keep fixed a number %2, 0 < 2 < min (b, a — b).
For this h, and j =1, .-+, N, let

Pi(@) = @5(x + (L — §/N)h) — p,(2), (@elj.

We note that each @; is continuous, and &, = 0. Moreover, if 2, y
are in (—b, b), then z,y,2 + k, and ¥y — h/N are in (—a, a).
Thus, for all z,y in (—b, b), we have

S5 +00) = 2w + b+ 3 — HN) = S oa +9) = 0.

The induction hypothesis implies that, for 7 =1,---,N—1,%; is a
polynomial of degree N — 3 at most on I;. Hence @; is, on I, the
sum of a polynomial of degree N — 2 at most and a function of period
(1 — §/N)h. But such a representation is given for every sufficiently
small positive h, which, with the continuity of @;, implies that ¢, is
a polynomial of degree N — 2 at most on I}, (1 <j < N —1). From
the arbitrariness of b, @, is such a polynomial on I,. Finally, (2.6)
shows that @, is also such a polynomial on I,.

In a previous paper [1], results of ». d. Corput were used to
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obtain various sufficient conditions on a real sequence 4 in order that
4 satisfy condition (I):

(I) There exists a sequence S such that lim A7y(n) (ne€ S) exists
for all 7 = r, while {(vv(n), dpr(n), +--, 4" "p(n)): n € S} s uniformly
distributed (mod 1) in the r-dimensional unit cube.

(I) clearly implies that + has property (QN) for every N = 2.
The reader is referred to the paper for details and proofs.

3. A metric result for uniform distribution in the N-cube.

THEOREM 3.1 Let g = {g(n): n € Z} be a sequence of real numbers.
Let there exist a subsequence S, of Z such that, for every N-tuple
iy »++, hy of integers mot all zero there holds

3.1) limlﬁ_v]h,,g(n+p)|=°°, asn—oco, MeS,.

Then there exists a subsequence S of S, such that, for almost all real
a, the sequence (ag”™) | S is uniformly distributed (mod1l) in the N-
cube.

Proof. Let the set of all such N-tuples be ordered, with, say,
hi, -+, k) as the first. Let a subsequence S, S, be taken such that

g%mn+m—MM+M}

is either greater than 1 for every =, m in S,, with = > m, or else is
less than —1 for every such # and m. Successively extracting subse-
quences S, O S,> --- in this way, and then using a diagonal procedure,
one finally obtains a sequence S such that, for every N-tuple h,, «--, hy,
there is an m, = m,(h,, - -+, hy) such that one has either

N
(3.2) 3 fo(n + p) — g(m + p)} = 1
for all m and m wn S with » > m = m,
or else
(3:3) S, hufg(n + p) — glm + p)} = —1

for all such n and m.
By a well-known result of Weyl [6, p. 348], either condition (3.2)
or (3.3) implies that, for almost all real «, the sequence

(3.4) aémmn+m (nes)
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is uniformly distributed (mod 1). There being only countably many
N-tuples, it follows that, for almost all «, (3.4) is uniformly distributed
(mod 1) for every N-tuple %, ---, hy. But this shows [2, p.66] that
for almost all a the sequence (ag”)| S is uniformly distributed (mod 1)
in the N-cube.

It is easy to see that if # > 1 is a transcendental number and
g(n) = 6", then Theorem 3.1 is applicable. The next result shows the
less obvious fact that Theorem 3.1 also applies if, for instance, g(n) =
n? log n sin n’.

THEOREM 3.2. Let g = {g(n): nez} be of the form
(3.5) g(n) = r(n)s(n) , nez,
where s has property (PN), while
(3.6) lim r(n) = o , lim (r(n + 1)/r(n)) = 1.

Then there is a subsequence S, of Z such that (3.1) holds for every
N-tuple h,, -+, hy of tntegers not all zero.

Proof. For p=1,2, ... N, it follows from (3.6) that
r(n + p) = r(n)(l + 01)), as n— oo,
Therefore we have
3.7 g(n + p) =rn)s(n + p)1 +o(l), as n—c, p=1,---, N,
Since s has property (PN), there exists a subsequence S, of Z such that

2.1) lim|hs(n + 1) 4+ ««+ + hys(n + N)| >0, (nesS,)

for all N-tuples A, ---, hy of integers not all zero. But (3.6), (3.7),
and (2.1) imply (3.1).

4. An application to noncontinuable power series. Perry [5]
has proved that, for every real sequence f = {f(n): ne Z}, there exists
a sequence of moduli {|a,|: € Z} such that the power series

(4.1) 3 lax | e(f(w)z"

has radius of convergence 1 and the analytic function it represents
can be continued analytically across a semicircle of the unit circle.
However, if the additional requirements

(4.2) la,| = 0(1) as m— co
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and

. . kE+N
4.3) lim inf 3 |a,|=

N—oeoo 05k<eco n=k+1
are imposed, then there are conditions on f sufficient that (4.1) represent
a function with |z| = 1 as its natural boundary. Some such conditions
were given in [1]. Theorem 4 gives a metric result in this direction.

THEOREM 4. Let {|a,|:neZ} satisfy (4.2) and (4.3). Let g be a
real sequence which, for each N, satifies the hypothesis of Theorem
3.1. For each real «, let

(4.4) F.(a) = 3| a, | e(@g(n))z", 2 <1.

Then the set of a for which F, can be continued across an arc of
the unit circle has measure zero.

Example. Y, e(ansinn?)z" has |z| =1 as its natural boundary
for almost all a.

For N=2,8,.-., let A, be the set of those real &« for which
ag”¥ is dense (mod 1) in the unit N-cube.

By Theorem 3.1, A, contains almost all «, and it follows that
almost all « are in A, for every N. For each such «, and each z, = ¢(4,),
there holds

k+N k+N
(4.5) lim sup | i a.e(ag(n) + nb,) | = liminf >, |a,
koo k1 k—oo k+1

In view of (4.3), (4.5) shows that the partial sums of the series in
(4.4) are unbounded at z, By (4.2) and a well-known theorem of
Fatou [3, p.391], it follows that z, is a singularity for F.
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