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SEMIGROUP ALGEBRAS THAT ARE
GROUP ALGEBRAS

D. B. COLEMAN

If S is a finite semigroup, and if K is a field, under what
conditions is there a group G such that the semigroup algebra
KS is isomorphic to the group algebra KG?

The following theorems are proved:

1. Let S have odd order n, and let K be either a real
number field or GF'(g), where ¢ is a prime less than any prime
divisor of n, If KS = KG for a group G, then S is a group.

2. Let K be a cyclotomic field over the rationals, and let
G be an abelian group. Then KG = KS for a semigroup S
that is not a group if and only if for some prime p and some
positive integer k, K contains all p*th roots of unity and the
cyclic group of order p* is a direct factor of G.

3. Let S be a commutative semigroup of order %, and
let K = GF'(p), where p is a prime not exceeding the smallest
prime dividing n. If KS = KG for a group G, then S is a
group,

The semigroup ring of a semilattice is also considered.

1. Preliminary remarks. The basic definitions and concepts
involving semigroups that are used here can be found in [2].

For related literature, see [5],[6],[7], 9], [10], and §5.2 in [2].

Let S be a finite semigroup and let K be a field. The semigroup
algebra KS is the free algebra on S; that is S forms a K-basis for
KS and multiplication in KS is induced by that in S.

If S has a zero element z, let K,S denote the contracted semi-
group algebra of S. We see that K,S is an algebra that has the
nonzero members of S as a basis, with multiplication o determined by

sot =st if st #2 and sot =0 if st = 2z;teS\{z}.

If J is an ideal in S, let S/J denote the Rees quotient semigroup
of S modulo J.

It is easy to verify that if J is an ideal in S, then the factor
algebra KS/KJ is isomorphic to the contracted algebra of S/J.
Also, if S has a zero, then K,S/KJ = K(S/J). [2, p. 160].

If A is an algebra over K, we denote by A, the algebra of
k X k matrices over A, where k is a positive integer.

By a nongroup we mean a semigroup that is not a group.

GF'(q) denotes the Galois field with ¢ elements.

2. Odd order semigroups. Let S be a finite semigroup, and
let pcJ,cJ,c---cdJ, =8 be a principal series for S. Suppose
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that K is a field such that KS is semisimple. Then by [2, pp. 161-
162], each J;/J;_, is O-simple, ¢ = 2, ---, k, and

KS = KJ, @ K((Jo/J.) D -+ B K(Ji/ i) «

According to M. Teissier (see [2, p. 165]), J; is a group. Also, for
each ¢ =2, ..., k, there is a group H; such that K(J;/J;_,) = (KH,),,,
the algebra of %; x k; matrices over KH,, for some positive integer %,.
This is due to W. D. Munn; see [2, p. 162]. Each KH,, being semi-
simple, has K as a direct summand. It follows that each K (J,/J;_,)
has K, as a simple direct summand. It is well known that the group
algebra KG is semisimple if and only if the characteristic of K does
not divide the order of G. Thus we have

THEOREM 2.1. Let G be a finite group of order m, and let K be
a field whose characteristic does not divide m. Suppose that KG =
K@ >3- (Dy)y;, where each D; is a division algebra properly con-
taining K. If S is a semigroup such that KS = KG, then S 1is a
group.

If » is odd, and if K contains no n-th roots of unity except 1,
then it follows from [1] that the hypothesis of the theorem holds.
Hence we have the following special case.

COROLLARY 2.2. Let K be a field of real numbers, and let S
be a semigroup of odd order. If KS = KG for some group G, then
S is itself a group.

COROLLARY 2.3. Let S be a semigroup of order n, and let
K = GF(p™), where p is a prime such that no prime divisor of n
divides p(p™ — 1). If KS = KG for some group G, then S is a group.

A CONSTRUCTION 2.4. Suppose that A4 is an algebra over K such
that A=A PAPD--- DA, for ideals A;. Suppose further that
A, = KS, for a semigroup S,, and that for each + =1, ---, ¢, A; is
either KS; or K,S: for a semigroup S; or a semigroup S; =S, U0
with zero, respectively.

Let S =S,U{z + ¢: 2 e ! S}, where ¢, is an idempotent in S,.
Since A;A4; = (0) for 7 + 7, we see that S is a semigroup. Since
SyUS,U---US, is a basis for A, we have that A = KS. Since S,
is an ideal in S, S is not a group.

This construction follows that in the proof of Theorem 5.30 in [2].
In that case S, = {¢,} and A; is a full matrix algebra, for ¢ > 0.

We now see that the hypothesis that » is odd is needed in 2.2,
For let D denote the dihedral group of order 8, and let K be a field
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of characteristic #2. Then KD=KPKPKPKPHK,. By 24
there is a nongroup S such that KS = KD. If K has characteristic
2, there is no such S. In fact, if G is a p-group, if K is a field of
characteristic p, and if KS = KG, then S is a group. For in this case
KG has no idempotents except 0 and 1; thus KG = KS forces S to
have exactly one idempotent which must be an identity. (Notice
that a zero element in S is not the zero of KS). Thus the finite
semigroup S is a group.

Another example is of interest here. Let G = S,, the symmetric
group on 3 letters, and let K have characteristic #3. Then KG =
KC & K,, where C is the group of order 2. Thus, as before, KG = KS
for some nongroup S.

In examining examples we use the fact that the matrix algebra
K, is a contracted semigroup algebra. This raises the question:
What are the semigroups S such that K,S = K,,? From Theorem
5.19 and Corollary 3.12 in [2] we get the following answer.

Let P be a nonsingular m X m matrix over K all of whose
entries are either 0 or 1. Let {E;;} be the usual m* matrix units;
E,,E,, = 6;,E;,,.. Let U(P) denote the multiplicative semigroup of
matrices consisting of the zero matrix and all matrices of the form
PE,;1<t,j<m. If S is a semigroup with zero, then K,S = K,,
if and only if S = U(P) for some such nonsingular P. Moreover,
UP) = U(P’) if and only if P and P’ have the same number of
entries equal to one. We see that there are exactly m* — 2m + 2
nonisomorphic semigroups U(P). Note also that U(P) = U(P’) if and
only if there is a nonsingular matrix T such that T'U(P)T = U(P’).

3. Commutative semigroup algebras. Let G be an abelian
group of order », and let K be a field whose characteristic does not
divide n. Then according to [8], we have

(L) KG =@ X a.K(C) 5

summation is over divisors of =, {; is a primitive d-th root of unity,
and a,K({;) indicates K({,) as a direct summand a, times. Further
a, = ng4/v;, where n, is the number of elements of order d in G and
v, = deg (K({,)/K).

If there are groups G, ---,G,, with m > 1, such that KG =
KG, & --- P KG,, then by 2.4 there is a nongroup S such that
KS = KG. By Theorem 5.21 in [2], we see that the converse holds.

Thus given the abelian group G, the semigroups S such that
KS = KG are precisely those commutative semigroups S such that

(i) S is the disjoint union of groups, G, ---, G,; and

(ii) KG = KG, & --- P KG,.
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By Theorem 4.11 in [2] all semigroups satisfying (i) can be deter-
mined. Also, since all finite groups of order less than =, and their
corresponding numbers #, can be determined, we can use formula
(1) to check condition (ii).

Note that if K contains a primitive p*-th root of unity, and if
the cyclic group C(p*) of order p* is a direct factor of G, then con-
dition (ii) holds. For in this case KC(p*) = p*K, so that

K(C(p*) x H) = KC(p*)  KH = p*K(H) .

In the following case the converse holds.
Let Q denote the rational field. To avoid trivialities, when we
write K({;) we assume that d is either odd or divisible by 4.

THEOREM 3.1. Let K = Q(0), where { is a primitive m-th root
of unity, and let G be an abelian group. There is a nongroup S
such that KS = KG if and only if there is a prime p and a positive
integer k such that K contains all the p*~th roots of unmity and
C(p*) is a direct factor of G.

Proof. We just observed the sufficiency of the condition.
Suppose conversely that

(2) KG=KG & ---DKG,, s>1.

Assume that each group algebra KG; is indecomposable as a direct
sum of group algebras. Then for each 1, either G, =1, or KG; is
the direct sum of fields K({,), not all equal to K.

Suppose that ¢ is a prime dividing the order of G;; then ¢ divides
the order n of G. For there is some power ¢* of ¢ such that
K < K({.a) = K(¢;) for a divisor d of =. (Otherwise, using the
remarks preceding the theorem, KG; would be decomposable.) Thus
K <QK) = K(Cq“) = K({4), where ¢ = [ms qa] = [m’ d]7 the least
common multiple. Since ¢* does not divide m, we have that ¢
divides d.

Suppose now that our condition fails, and let p, ---, p. be the
distinet prime divisors of n. Then for each 4, there is a positive
integer n; such that p}* does not divide m and C(p}?) is a subgroup
of every nontrivial cyclic direct factor of the p;-Sylow subgroup of G.
Choose each #7; to be the smallest such integer. We may assume
without loss of generality that p?i—* divides m.

In (2), think of KG and each KG; being expressed as in (1).
Now delete all fields K({;) for which ([m, d], n) exceeds pr ... prr,
On the left of (2) we have left the group algebra of a subgroup of
G whose p;-Sylow subgroup is of type (p%, .-, p¥9). On the right,
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after possibly some further decomposition, we have a like situation.
We may thus assume that for each 7, the p,-Sylow subgroup P; of
G is of type (p%, ---, pri), with say k; factors; and for each G;, the
p;-Sylow subgroup P/ of G; is either trivial or of type (p}i, ---, pl),
with say k;; factors. Take k;; = 0 in case P/ = 1.

Using (1), we have that

(3) KP; = a,K G b, K(,) ,
where d = p?, a; = p{"~Y% and
= (pi*i — p"7V4)/0; 5 0, = deg (K(L)/K) .
Similarly
(4) KP/ = a ;K @ b;;K(C,) ,
where a;; = p{™*%i and
biy = (piesis — piibis)fo, .

For some pair a, 8 we have k, > k,;. Otherwise some G; would
be isomorphic to G.

Now use formulas (3) and (4) and the fact that K(4 x B) =
KA R® KB to count the number of summands on each side of (2)
that are isomorphic to K. We obtain

(5) 11:[ (nr-l ki — 2 H o (ni—~1)kij .
=1

Jj=11=1

Let f = pre; use (3) and (4) to count all summands on each side
of (2) isomorphic to K({;). Then add the terms in (5) to each side of
the resulting equation, getting

(6) I pimi ke phata = Z II pirivkei . phatai |

iFa =1 1%a

Multiplying (5) by IIi.. p¥, we have

0 I prote = 3311 prstis heosss

J=11=1

Multiplying (6) by Tl:.. pif, we have

r

(8) H ”‘k‘-ZHp"lupaa;.

i=1 J=1 i#a

But k., > k.s so that (7) and (8) cannot both hold. This con-
tradiction completes the proof.
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COROLLARY 3.2. Let G be a finite abelian group such that
QG = QS for a mongroup S. Then C(2) is a direct factor of G.

REMARK 3.3. Let S be a commutative semigroup of order 2m, where
mis odd. If QS = QG for a group G, then either S = G or S is the
disjoint union of two copies of the group H, where G = C(2) x H.

Proof. Suppose that @S = QG. Let G = C(2) x H, where H has
order m. According to [8], QG completely determines G. Hence if
S is a group, then S = G.

QG has two simple direct summands isomorphic to @. Thus if
S is not a group, QS = QG, P QG, for groups G, and G,. It is clear
that the orders of G, and G, have the same prime divisors, and
those are the prime divisors of m. Let p be one of these primes,
and let P, P, and P, be the p-Sylow subgroups of H, G, and G,,
respectively. Then we have

(9) Q(C(2) X P) =QP, D QP .

This leads to an equation 2p° = p* + p°, which implies b = ¢ = a.
Thus P, P, and P, all have the same order »°. By induction on the
exponent p° of P we see that P= P, = P,. If e¢=1, then P, P, and
P, are all elementary abelian of the same order, hence isomorphie,.
Suppose e > 1. Deleting direct summands Q({,) from both sides of
(9) we have

Q(C(2) x P') = QP! ® QF;,

where P’ = {x € P:2** = 1}. As before, P’, P/ and P, have the same
order; and by induction P’ = P! = P!/. From (9), and the fact that
P, P, and P, have the same order, the three groups have the same
number of elements of order p°. Thus P= P, = P,.

Theorem 3.1 fails for arbitrary finite extensions of Q. For let
K =Q13), and let G = C(12). Notice that

K() = K(C) = K(G) = K(C) = QV'3,19) .
Using this we see that
KG = KG, &P KG, ,

where G, = C(3) and G, = C(3) x C(3).

Theorem 3.1 also fails for the prime fields GF'(p), p a prime,
To see this, let K = GF(5). Then KC(8) = KC(2) P KC(6). Here
K(,) = K and K((,) = K(C) = K({) = GF(25).

THEOREM 3.4. Let K be a field of characteristic p # 0; let
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G = P X H, where P is a p-group and H 1is an abelian group of
order prime to p. Then KG = KS for a mongroup S if and only
of KH = KT for a nongroup T.

Proof. If KH = KT, and if T is a nongroup, then S=P x T
is a nongroup, and KG = KS.

Conversely, suppose that S is a nongroup and that B = KS = KG.
Let KH=K, & --- DK, for fields K;, Then R=R D --- DR,
where R, = K; Q KP. The R, are the indecomposable components
of R. As a ring, R, is isomorphic with K;P. Thus every element
in R; is either nilpotent or a unit. Let w, ---, 7, be the projections
of R onto the R;. Let X ={1,---, k}.

Let X, = {1 e X: 7w,(s) is a unit in R, for all se S}. Then X, # O;
otherwise the element s,-s,- --- -s,, the product of all members of S,
would be the zero element of R. Let G, = {s€ S: 7,;(s) = 0 for j ¢ X,}.
Then G, is a group, KG, is an ideal in R, and KG, = 3\ R; (1€ X)).
Also R = KG, P K,U, where U = {o,(s):s€S,s¢G}; o, = 2. 7; (j &€ X,).
Fix j¢ X,, and choose ¢¢ S such that w,(t) is a unit in E;. There
is such an element; for if not, R; would be nilpotent. Let X, =
{teX:1¢ X, and 7,(t) is a unit in R;}. Suppose X = X, U X,. Let
n=>mr (teX,) and o, = >\7; (J& X, U X,), and let G} = {n(s):s¢ G,
and p,(s) = 0} and G} = {0s): s€ G, and p(s) = 0} U {0}. Note that
0¢eGl.

We have R = KG, @ K.G;, D KG; KG, = D R; (1€ X)), K.G) = S\ R;
(te X)), and KG;, = 3\ R; (1¢ X, U X,).

We continue this procedure until we have

RZKGI@KOG;@...@KOG;M/!

with m > 1, where the set X is partitioned into disjoint subsets
X, -+, X KG, = 3, R; (j € X,) and for each ¢ = 1, either G, = G, U 0
for a group G,, or K,G, = R; for some j, and G, is not a group with
zero. Suppose that the former holds for ¢ =1, ---, w, and that X,
is a singleton for ¢ > w. Let N be the radical of R, and for each
¢, let N, be the radical of K,G,. If ¢ > w, then KG,/N,= K. For
since K,G|, = R; has no nontrivial idempotents, it follows that G; has
at most two idempotents. If G, has only one idempotent, then E; is
nilpotent., This is not the case. Thus G, has exactly two idempotents,
the 0 and 1 in R;. Thus G/ is the disjoint union of a nilpotent semi-
group Z and a group V. Clearly K,Zc N,. Thus there is a homo-
morphism g of KV = K,G'/K,Z onto K; = R;/Rad R;. The normalized
units of finite order in K; ® KP have order a power of p. Thus V is a
p-group (perhaps trivial). Thus the kernel of g is the radical of
KV and K; = K.
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According to Deskins [4], R/N = KH and KG,/N,= KH, for
q < w, where H, is the p-complement of G,. Thus

KH=KH @ ---DKH,KDH---PK.

This completes the proof.

COROLLARY 3.5. Let S be a commutative semigroup of order m,
and let K = GF (p), where p is the smallest prime dividing n. If
KS = KG for a group G, them S is a group.

COROLLARY 3.6. Let K= GF(2). If S is a commutative semi-
group, and if KS = KG for some group G, then S is a group.

Note that GF'(2) and transcendental extensions of GF'(2) are the
only fields K for which Corollary 3.6 will hold. For if K contains
GF (2!, and if G is the cyclic group of order 2t — 1, then KG = 3 K.
If K has characteristic =2, then KC(2) = KD K.

THEOREM 3.7. Let K be the real number field, and let S be a
commutative nongroup of order n. Then there is a group G such
that KS = KG if and only if the following conditions hold:

(i) n s even;

(ii) S is the disjoint union of group G +++, Gu;

(iii) If 2% ¢s the number of elements x in G; such that x* =1,
then >.7, 2% 1is a power of 2 dividing n.

Proof. The necessity of the conditions follows from the fact that
if G is an abelian group, then GK = aK P bL, where a — 1 is the
number of elements of G of order 2, and L is the complex field.

Conversely, suppose the conditions hold, and let >, 2% = 2°,
Let n =2°-27-m, with m odd; let G = C(2) x --+ x C(2) x C(2"") X H,
where there are ¢ — 1 factors C(2) and H is any abelian group of
order m. Then clearly KS = KG.

4. Semilattices., A semigroup in which every element is idem-
potent is called a band. A commutative band is a (lower) semilattice
under the ordering: e < f if e = ¢f. Conversely, any semilattice is a
commutative band under the operation e¢-f = e A f.

If S is a semilattice, and if R is a commutative ring with identity,
then the semigroup ring RS has an identity. ([6, Th. 7.5]). Corre-
sponding to Theorem 5.27 in [5] we have

THEOREM 4.1. Let S be ¢ semilattice of order n. Then RS 1is



SEMIGROUP ALGEBRAS THAT ARE GROUP ALGEBRAS 255

the direct sum of m copies of R and R,S is the direct sum of n —1
copies of R.

Proof. The theorem is trivial for w = 1. If » =2, and S = {z, ¢},
with ez = ze = 2, then R,S = Re and RS = Rz R(e — z), so the theorem
holds.

Suppose that n > 2 and proceed inductively. Choose f €S such
that f is neither the zero of S nor the identity of S, in case there
isone. Let J = Sf. Then RS = (RS)f@® RS — f) = RJ P R(S/J).
Since both J and S/J are semilattices of order less than n, we have
by induction that RJ and R,(S/J) are direct sums of copies of R, and
hence so is RS.

Similarly R,S = R,J @ R,(S/J) and induction gives R,S as a sum
of copies of R.

As a partial converse we have

THEOREM 4.2. Let S be a semigroup of order n, and let R be
an integral domain such that no prime p < n is a unit in R. If
RS is the direct sum of copies of R, then S is a semilattice.

Proof. Let RS=R® --- PR, and let K be the quotient field
of R. Then KS= K@ --- P K, so that KS is semisimple. Hence
by [2, Cor. 5.15] S is a semisimple commutative semigroup. Thus S
has a principal series ¢ < S, < S, < -+ < S, = S such that the kernel
S, = G, is a group and S,/S;_, is a group with zero G, U0 for ¢ =
2,+++, k. Thus RS= RG, & --- & RG,. By [3] each RG,; is inde-
composable; but by hypothesis each is the direct sum of copies of R.
Thus each G, is trivial, so that S is a semilattice.

Using Theorem 4.2 and the results of §3, we have

ProrosiTion 4.3. Let S be a semilattice, let 7" be a commutative
semigroup of the same order, and let K be a field of characteristic 0.
Then KS = KT if and only if T is the disjoint union of groups
G,U --- UG, such that if G, has exponent m,;, then K contains the
m;-th roots of unity.

Using Theorem 4.2 and the fact that for a band S, KS is semi-
simple if and only if S is commutative [2, p. 169], we see

ProposITION 4.4. Let S be a band, and let G be a group of the
same order n. Let K be a field whose characteristic does not divide 7.
Then KS = KG if and only if S and G are commutative and F' contains
the m-th roots of unity, where m is the exponent of G.

Let R = GF(2). Using the fact that RS=R& --- PR for a
finite semilattice S, we may derive the following well known result:
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Every semilattice S of order » can be embedded in the lattice 2"
subsets of the set {1,2, ---,n}. In fact, S can be considered as
linearly independent subset of 2", where 2* is viewed as R X +-+ X i

The author thanks W. E. Deskins for suggesting this problem.
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