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INTEGRALS WHICH ARE CONVEX FUNCTIONALS

R. T. ROCKAFELLAR

This paper examines numerical functionals defined on func-
tion spaces by means of integrals having certain convexity
properties. The functionals are themselves convex, so they
can be analysed in the light of the theory of conjugate convex
functions, which has recently undergone extensive develop-
ment, The results obtained are applicable to Orlicz space
theory and in the study of various extremum problems in
control theory and the calculus of variations,

In everything that follows, let T denote a measure space with a
o-finite measure d¢. Let L be a particular real vector space of measur-
able functions u from T to R" (for a fixed n). For instance, one could
take L to be the space L2(T) consisting of all R"-valued measurable
functions # on T such that @,(u) < + -, where

0,u) = | put)dt and ,@) = A/p)|aP, 1Sp <+

with denoting the Euclidean norm on R". No matter which L is
chosen, one can regard @, as a functional from L to (— oo, + o],
Then @, is convex, in consequence of the fact that the function ¢, is
convex on R". (A function F' from a real vector space to (— oo, + o]
is said to be convex if

FOw + (1 —Ny) = MF(@) + (1 = MF(@y)

always holds when 0 < » < 1.) Notice that, if ¢, is the convex func-
tion defined by

0 if |x|=<1,

(%) = lim =
Po) =M@ =1, it jw>1,

the corresponding integral &.(u) is finite if and only if % belongs to
the unit ball of the space L3(T) of essentially bounded measurable
functions.

Here we propose to study a much broader class functionals than
the @,, 1 < p < . These functionals are of the form

I(w) = ST ft, u(t)dt for wel,

where f is a function from 7 x R™ to (— oo, + 0], such that f(¢, x)
is a convex function of x e R* for each te 7. Such a function f we
call a convex integrand for convenience.

As a preliminary task, we must come up with conditions on f
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ensuring that various functions such as f(¢, u(f)) be measurable in ¢.
The well-known condition of Carathéodory is no help, because we do
not want to assume that £(¢, ) is continuous in xz. That would prevent
us from considering most of the cases were f can be infinity-valued.
We have already encountered one such case, namely f = ¢... Generally
speaking, the device of allowing f to have the value -+ - has the
effect of constraining u(¢) to lie in a certain convex subset of R,
depending perhaps on t. Indeed, a necessary condition for I.(u) to
be finite is that

u(t) € dom f, for almost all ¢,

where f, denotes the convex function f,(x) = f(¢, #). (For any convex
function F, the set of points where F' does not have the value + -
is a convex set, which we call the effective domain of F' and denote
by dom F.)

In order that I,(u) be an unambiguous number in (—oo, + o], a
further condition besides measurability, is usually needed, since f(¢, x)
is not required to be nonnegative. The important thing, however, is
that I, turns out to be a convex function on L when it is well-defined.

The @, have already been cited as examples of convex functionals
of type I, which have received close attention from functional analysts.
If the integrands ¢, are generalized to those of the form f(¢, 2) =
N(jx|) where N is a finite nonnegative convex function on the real
line such that N(\) > 0 for » > 0,

lim N(A)/A =0 and liTm NN = o,
10 A1 oo

one gets convex functionals I, defining generalized L* spaces, called
Orlicz spaces. These spaces are very useful in dealing with integral
equations. We refer the reader to [5] for an excellent account.

Possible applications along the lines suggested by the theory of
Orlicz spaces are one motivation for looking at the convex functionals
I, in the general case. Another motivation is that such functionals
arise naturally in the calculus of variations. For example, suppose that
T = [0, 1], with dt¢ as the ordinary Lebesgue measure. Regarding R
as R* P R*, write each vector  as a pair (y, 2), where y and z have &
components. Then I, may be interpreted as a functional defined for
pairs of measurable functions from [0, 1] to R*. Now let

J@) = Lig, &) = |_f(t, a(®), a®)at,

where ¢ is a differentiable function from [0,1] to R, (a curve) and
¢ = dq/dt. Inasmuch as differentiation is a linear operation, J will be
a convex function on the space of curves q. Problems which involve



INTEGRALS WHICH ARE CONVEX FUNCTIONALS 527

minimizing J can hopefully be tackled therefore by convexity methods,
such as the existence and duality theory in [11]. Note that infinite
values of f correspond to constraints on the values of ¢(¢) and ¢(t)
for the curves ¢ such that J(q) < + . Nonclassical convex constrained
minimization problems of this sort abound in control theory. We plan
elsewhere to take up applications of our results to such areas.

The main question treated in this paper is whether the conjugate
of a convex functional I, is another such functional I,. The question
is significant, because the present theory of convex functions is so
extensively concerned with conjugates. The notion of conjugacy, due
to Fenchel [2], may be formulated in a general way as follows. Let
E and E* be real vector spaces, and let <{z, 2*> be a (real) bilinear
function of xe E and z*e E*, Let F be a proper convex function
on K (i.e. a convex function with values in (— o, + -] which is not
identically + o), The function F'* on E* defined by

F*(x*) = —inf {F(x) — {z, 2*>|xc E}

is called the conjugate of F (with respect to the given pairing of F
and E* by <-,-»). It is a convex function on E* with values in
(— oo, +]. Furthermore, F'* is always lower semi-continuous with
respect to the weak topology induced on E* by E. (Lower semi-
continuity means that the set {«*|F*(z*) < y}, which incidentally is
always convex, is closed for every real p.) The conjugate of F'* is
in turn the function F* on E defined by

F**(x) = —inf {F*(z*) — &, 2*>|a* e E*}.

In order that F'* be proper and F'** = F, it is necessary and sufficient
that F itself be lower semi-continuous with respect to the weak
topology induced on E by E*. General proofs of these result are
given in [1] and [6].

Two conjugacy contexts will mostly concern us here. In the first
case, £ = E* = R* with <{wx, *) as the ordinary inner product. The
weak topologies are then the ordinary topologies on R*. In the second
case we take F = L and E* = L*, where L* is any space of R"-valued
measurable functions, such that the inner product <{u(t), u*(¢)> is sum-
mable as a function of ¢ for every we L and u* e L*. The pairing is

given by
Gty = | <utt), wi (vt .

Any topologies compatible with the duality between E and E* could
be invoked in place of the weak topologies, for instance the norm
topologies if F = E* = L:(T).
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Suppose that f(¢, ) is a convex integrand which is proper and
lower semi-continuous in z for each ¢. Define f*(¢, *) by taking con-
jugates in », i.e. f* = (f,)* for each t. Then, according to the results
described above, f* is another convex integrand, proper and lower
semi-continuous in its convex argument. We call it the integrand
conjugate to f. The conjugate of the conjugate is the original integrand
f. The principal fact brought out in this paper (Theorem 2) is that
conjugate integrands f and f* usually furnish conjugate functionals
of L and L*. This generalizes the fact that @, is conjugate to ¢,, and
@, on L¥T) is conjugate to @, on Li(T) (with (1/p) + 1/9) =1). The
resulting class of “best inequalities” of the type

Cuy w*y < Ij(w) + In(u?)

is likewise a generalization of certain classical inequalities.

2. Normal integrands and measurability. Before we can pro-
ceed, we must established that various technical constructions result
in functions which are measurable. To this end, some regularity con-
ditions must be imposed. We shall call a convex integrand f normal
if f(t, x) is proper and lower semi-continuous in x for each ¢, and if
further there exists a countable collection U of measurable functions
u from T to R™ having the following properties:

(a) for each we U, f(t, u(t)) is measurable in ¢;
(b) for each ¢, U, N dom f, is dense in dom f,, where

U, ={u@®)|uweU}.

The latter conditions, which seem offhand to be rather complicated,

are automatically satisfied in some notable cases, as we shall now
indicate.

LEmMA 1. Suppose f(t, x) = F(x) for all t, where F s a lower
semi-continuwous proper convex function on R*. Then f is a normal
convex integrand.

Proof. Let D be a countable dense subset of the effective domain
of F (= dom f, for all ¢). (Such a D exists, of course, because dom F'
is a nonempty convex set in R".) Let U consist of the constant func-
tions on T with values in D. Then conditions (a) and (b) are satisfied
in a trivial way.

LEMMA 2. Suppose f is a convex integrand such that f(t,x) s
measurable in t for each fixed x, and such that, for each t, f(t, x)
1s lower semi-continuous in % and has tnterior points in its effective
domain {x|f(t, ) < +}. Then f is a normal convexr integrand.
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Proof. Let D be a countable dense subset of R", and let U be
the constant functions with values in D. The measurability condition
for normality is satisfied in virtue of the present measurability hypo-
thesis. The density condition is satisfied, because D has a dense inter-
section with the interior of dom f,, and dom f, is the closure of its
interior by convexity.

COROLLARY. Suppose f is a convex integrand having only finite
values, such that f(t,x) is measurable in t for each x. Then f is a
normal convex integrand.

Proof. Here dom f, = R" for every t. The lower semi-continuity
of f, is then automatic, since a finite convex function on an open
convex set in R is always continuous.

An intermediate fact about the consequences of normality will
now be deduced.

LEMMA 3. Let f be a normal convex integrand with conjugate f*.
Then, for every measurable function uw* from T to R", the fumnction
f*(E, w*(t)) ts measurable in t.

Proof. By definition,
—f*(t, w*(t)) = inf {f(¢, x) — {x, w*(t)>|x e R"}.

We shall show that, for each ¢, the infimum can actually be taken
over x ¢ U, instead, where U, is the set in the definition of normality.
Since f(t, ) = + o for x¢ dom f,, the question is whether any value
of f(t, ) = {x, w*(t)> with x edom f, can be approximated by one with
xe U, Ndomf,. Now U,Ndomyf, is dense in dom f, by hypothesis.
Furthermore dom f,, being a nonempty convex set, is the closure of its
relative interior (its interior relative to the affine manifold it generates).
The intersection of U, with this relative interior must be dense in dom f,.
According to familiar results about lower semi-continuous convex fune-
tions (e.g. in [3], [13]), f. is continuous with respect to the relative
interior of dom f, and its values at relative boundary points can be
obtained as limits of the relative interior values. Therefore the values
of f(t,x) for xedom f, are limits of those for U,Ndomf, as we
wanted to show. The upshot is that

—f* (¢, w*(t)) = inf {f(¢, u(?)) — <w(?), w* @)y |ue U}.

This formula expresses f* (¢, w*(t)) as the pointwise infimum of a collec-
tion of functions on 7. Each of the functions in the collection is
measurable, in view of the hypotheses, and the collection is countable.
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The pointwise infimum is consequently another measurable function
on T.

Moreau’s proximation mappings, whose properties are elucidated
in [9], will be very useful to us. Here is how they are defined. Let
F be any lower semi-continuous closed proper convex function on R”.
It can be proved that, for each ze R", there exist unique vectors z
and z* such that

2=+ 2* and F(x)+ F*@*) =z, v*).
We write
% = prox (| F) and a* = prox(z|F*).

The mapping prox (- | F') from R" into itself is called the prozimation
associated with F. It is continuous (a metric contraction as a matter
of fact), and its range is dense in dom F. If F'is the indicator func-
tion of a closed convex set K (in other words F(x) =0 when ze K
and F(x) = 4+ o when « ¢ K), then prox (z| F') is the point of K near-
est to z. In general, prox (z|F') is the unique x for which

F(x)+%|x—z]“‘

achieves its minimum.

LEMMA 4. Let f be a mnormal convex integrand. Let z be a
measurable function from T to R*. Then the functions prox (2(t)|f;)
and prox (2(t)|fi*) are measurable in t.

Proof. Set
o(t, ) = fit, ©) + %Iw — ).

It is easily verified that g is another normal convex integrand. We
shall be concerned with the conjugate integrand g*(¢, «*). By Moreau’s
theory, gF is differentiable at 0 for each ¢, and /g;(0) = prox (2(¢) | ).
Now, for an arbitrary a c R",

<a, Vgi(0)y = lzlgl [o*(t, M) — g*(t, O)]/™ .

The difference quotient is a measurable function of ¢ for each A\ by
Lemma 3 and the normality of g. The limit can be taken over a count-
able sequence in A, so <a, Vg7(0)> is measurable in ¢. It follows that
prox (#(t) | f,) is measurable in ¢, and likewise prox (z(t) | f*) because

prox (z(?) | f*) = 2(t) — prox (2(t) | f1)
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for every t.
We can now prove that normality is preserved when one passes
to the conjugate.

LEMMA 5. If f is a mormal convex integrand, them f* is a
normal convex integrand, too.

Proof. We already know from the theory of conjugates that
f*(t, «*) is a lower semi-continuous proper convex function of xz* for
each t. The problem is to produce a collection U satisfying condition
(b) of normality (with f* in place of f). Condition (a) will then hold
by virtue of Lemma 3. Let D be any countable dense subset of R”".
Let U consist of the functions of the form w(t) = prox (z|f*) with z
ranging over D. Each ¢ U is measurable by Lemma 4. The set U,
is the image of D under prox (- |f:*). Since the proximation is con-
tinuous and its range is dense in dom f*, U, is dense in dom f;*.

COROLLARY. If f is a mormal convex integrand, then f(t, u(t)) is
measurable in t for every measurable function w from T to R".

Proof. This is immediate from Lemma 3, since f, = f**.

Our final lemma guarantees the existence of enough measurable
functions for one to minimize a normal convex integrand pointwise in
a measurable fashion.

LEMMA 6. Let f be a mormal comvexr integrand. Let o be a
measurable real-valued function on T such that

inf, f(¢, ) < a(t) for every ¢ .
Then there exists a measurable function w from T to R™ such that

S, u(t)) < a(t) for every ¢ .

Proof. Set K, = {x|f(t, x) < a(t)} for each t. According to the
general theory of convex functions on R”, each K, is a nonempty
closed convex subset of dom f, having the same dimension as dom f,,
inasmuch as f,(x) < a(t) for at least one x. Therefore U, N K, is
dense in K,, where U, is the set in the definition of the normality of
f. Let g(t,x) = 0 when ¢ K, and g¢(t, #) = +c when z¢ K,. Evi-
dently ¢ is another convex integrand satisfying the normality conditions
with the same collection U as invoked for f. Let w(t) be the point
of K, nearest to the origin, i.e.

u(t) = prox (0|g,) for each ¢.
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This % is a measurable function by Lemma 4 (applied to g), and
[, u(t)) < a(t) by definition of K,.

3. Conjugate convex integrals. The stage is now set for prov-
ing our chief results. We assume throughout that L* is a space of
measurable functions paired with L in the manner described in the in-
troduction. (When L is a Banach space, L* does not have to be its
dual.)

THEOREM 1. Let f be a normal convex integrand. Suppose there
exists at least one w* e L* such that f*(t, u*(t)) is a summable func-
tion of t. Then

L = | ft,uenat, wel,
T
is a well-defined convex function on L with values tn (—co, + o],

Proof. The measurability prerequisite to considering I, is ensured
by the corollary to Lemma 5. Let u* be one of the functions in L*
whose existence is provided for in the hypothesis. Since f, and f*
are conjugate to each other

Jt, w(®)) = {u(®), w*(8)) — F*(&, u*(t))

for every ¢t. The right side is a summable function of ¢ by the
hypothesis. Thus there can be no question of I;(u) being — «: either
f(t, u(t)) is summable or its integral is unambiguously + . As for
the convexity of I,, that is immediate from the inequality

S () + (L — Vo) = M@, w@) + 1 —NFE @),

which holds for every ¢t when 0 < A < 1 by the convexity of f,.

We shall say that L is decomposable when it satisfies the follow-
ing conditions:

(a) L contains every bounded measurable function from T to R"
which vanishes outside a set of finite measure;

(b) if we L and E is a set of finite measure in 7', then L contains
Yz, where x, is the characteristic function of E.

These conditions guarantee that one can alter functions in L arbi-
trarily in a bounded manner on sets of finite measure. (Subtract ¥-u
from u, and then add any bounded measurable function vanishing
outside E.) The first condition also implies that the functions in L*
are summable on sets of finite measure. The LZ(T) are examples of
of spaces decomposable in this sense.

THEOREM 2. Suppose L and L* are decomposable. Let f be a
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normal convex integrand such that f(t, w(t)) is summable in t for at
least one we L, and f*(t, u*(t)) ts summable in ¢t for at least one
u*e L*. Then I, on L and I, on L* are proper convex functions
conjugate to each other.

Proof. I; and I, are well-defined and convex by Theorem 1 and
Lemma 5, and they are proper by the hypothesis. For any z* in R*
we have

f@, %) + f*@, 2%) =z <z, %>

by conjugacy. Hence, for any e L and u* e L*,
L) + Luw) = | 6, u(t)dt + | 7+, wi(onae
= | <utt), wr (et = <u, .
T

It follows that
I;(w*) = sup {<u, w*) — I(u)|we L}
= —inf {Iy(u) — {u, w*y|ue L} = (I)*(w*) .

Verification of the opposite inequality will establish that I, is the
conjugate of I;. Fix any u*e L* and any B < I.(u*). Select any
real summable function ¢ on T such that

w(t) < F*(t, w t)) for all ¢, and STy(t)dt >8.

Since by conjugacy
FH(¢ %) = —inf {f(t, ®) — <@, ") |we R"},
we have
—(t) > inf {f(t, ®) — <&, w*(¢)y| v € R"}
for all ¢. We now apply Lemma 6 to a(t) = — u(t) and g, where
9(t, @) = f¢, ) — <z, u* (@) .

(The normality of f carries over to ¢.) The function u we obtain
from Lemma 6 satisfies

— (1) =S¢, w(t)) — <wlt), w* (@) .

Since T is o-finite by our underlying assumption, we can choose an
increasing sequence of measurable sets E, of finite measure with
union 7, such that the wu(¢f) we have constructed is bounded in t¢ E,
for each k. Let @ be any particular function in L for which the in-
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tegrand in I, is summable. (Such a function exists by hypothesis.)
For each k let

u(t) if tek,,

uilt) = {ﬁ(t) it teEl,

where E| denotes the complement of E, in T. These functions wu,
belong to L by the decomposability hypothesis. For each k¥ we have

[, e < | [<ut®), w > — fet, wielae
= gy ¥y = L) — | [CO(E), w*(8)) — St Tt

The boundedness assumption on E, is used here to ensure that
{u(t), w*(t)> be summable, so that

[, [uatt), w0y — 702, un(@)ldt = <y w> = L)

unambiguously. The integral over E| in the calculation above can
be made arbitrarily small by choosing % sufficiently large. On the
other hand

lim Lk p(t)dt = ST wtdt > 8

k—o0

by our assumptions. Thus
Ly WD — Iwe) > B

when k is large, implying that (I;)*(u*) > 6. Inasmuch as 8 was any
number less than I., we may now conclude that I.(u*) = (I,)*(u*).
The fact that I, = (I.)* follows dually.

COROLLARY. Suppose that L and L* are decomposable, and that
T is of finite measure. Let f be of the form f(t,x) = F(x), where
F is a lower semi-continuous proper convex function on R*. Then I;
on L and I;. on L* are conjugate to each other.

Proof. Such an f is normal by Lemma 1. The existence of
summable function for I, and I;. is elementary in this case. Namely,
take any « for which F(x) is finite, and let w be the constant
function whose sole value is z. Since T is of finite measure, u is
summable. By decomposability (b), we L. Similary for I,.. The
hypothesis of Theorem 2 is therefore satisfied.

The next theorem furnishes a different way of establishing the
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conjugacy of I, and I, in certain situations. It also yields a continuity
property.

THEOREM 3. Let T be of finite measure. Suppose that L* is
decomposable, and that L is actually L7(T). Let fbe a normal convex
integrand satisfying the following condition: there exists some a € L
and € >0 such that, for each xe R with |x|<e, the function
S, a(t) + x) is finite and bounded in t. Then I, on L and I;. on L*
are convex functions conjugate to each other. Moreover, I, is con-
tinuwous at a in the norm topology of L = L3 (T).

Proof. Replacing f by ¢ if necessary, where

(evidently another normal convex integrand), we can reduce everything
to the case where a(t) = 0 and f(¢,0) = 0. Then [,(0) = 0. We must
show that I, is norm-continuous at 0, and that f*(¢, w*(¢)) is summable
in ¢ for some u* e L*, The conjugacy of I, and I, will then follow
from the last theorem. Define

F(x) = sup {f(¢t, x)|teT}.

As a pointwise supremum of lower semi-continuous convex functions
on R", F is itself lower semi-continuous and convex. By hypothesis,
F(x) is finite on the open convex set {#| |x|<e}. Asis well-known
a finite convex function on a finite-dimensional open convex set is
automatically continuous. Hence F' is continuous when |z | < e. Fix
a positive 6 less than ¢, and let

kE=max{F(x)||z]| <0} < + oo .

Now F(0) =0, so that we have F(x) < (k/d)|x| when |z| <0 by
convexity. (Consider the values of F' along the line segment from 0
to ax, where o« = d/|xz|.) Hence for every t

f(t, x) < (k/6) |x| when |z|=<9.

This inequality also implies that f(¢, x) = — (k/d) |« | for every x.
(To verify this, one expresses 0 as a convex combination of # and uz,
where g = —4/|z|, namely 0 =x2 + (1 —N)px with v = — /(1 — p).
Then by the convexity of f
0 = f(¢, 0) = Nf(E, @) + (1 — N F(E, pw)
= MG ) + (1 — N(k/0) | po |

= —(p)(L — )AL @) + k0) |21 -

The first inequality has been applied here to px, which is permissible
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because | #x| = 6 by the choice of . One concludes that f(¢, x) +
(k/0) | x| is always non-negative.) In particular, therefore

| ft, )| < (k/0)|x| when |x|<4.

If we L satisfies |ju|| < 6, where || - || is the L2(T) norm, then
[ 1A, wt) at = (k/o) ||| meas T < + oo

Thus I;(u) is well-defined when ||« || < d, and it approaches 0 = I;(0)
as ||u || approaches 0. This establishes the continuity. We must still
construet a u* € L* for which f*(¢t, w*(t)) is summable. It suffices to
find such a «* in L3(T), for L* contains L3(7T) in consequence of the
hypothesis that L* is decomposable and T is of finite measure. Let

u(t) = prox (0] f;) .

The measurability of % is asserted by Lemma 4. For each ¢, #%(t) is
the point which minimizes f(¢, #) + 1/2 |« | on B". Since the minimand
vanishes at z = 0,

02 ft, w(t) + = a0) = —(k/o) | (t) | + L a()

It follows that |u(t)| < 2k/d for all ¢,s0 we L3(T). It now follows
further that

0 = f@t, u(t)) = —(k/9) |u(t) | = —2(k/0)* ,
so f(t, #(t)) is bounded in ¢ (and hence summable). Now take
u*(t) = —u(t) = 0 — prox (0| f,) = prox (0| f).
Again u* ¢ L(T). According to the basic property of proximations,

S, w(®) + (@, wi(@) = <), w* (1)

for every ¢. The first and last terms in this equation yield summable
functions, so we can conclude that f*(¢, w*(t)) is summable, too.

THEOREM 4. Let T be of finite measure. Let f(t, x) be a finite
convex function of x for each t and a bounded wmeasurable function
of t for each x. Then I, 1s a well-defined finite convex function on
L3(T) which is everywhere continuous with respect to the wuniform
norm. Moreover, the conjugate (I;)* of I, on L7 (T)*, the space of
all linear function as on L3(T) continuous with respect to the uniform
norm, 18 given by I,. in the following sense: if ve L7(T)* is of the
form
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o) = | utt), wr®pat, weLy(T),

one has (I;)*(v) = I, (u), whereas otherwise one has (I;)*(v) = + oo.

Proof. We note that f is a normal convex integrand by the
corollary to Lemma 2. The finiteness and continuity of I, are as-
serted by Theorem 3. Fix any v e L3(T)* such that (I,)*(v) < + oo.
We shall show that v corresponds to some w*e LL(T) as above,
whence it will follow from Theorem 3 that

(I5)*(v) = sup,{v(w) — I ()} = L.(u¥) .

For each measurable £ T, let #(E) denote the unique vector in R"
such that

{w, ((E)> = v(x-xz) for every xe R™,

where x .y, is the function which has the value = on E but the
value 0 elsewhere on 7. Then p is a finitely additive set function.
We have

o, (E)y = Iz - xz) + (Ir)*(v)
= | st @t + | fe, 0dt + (1) )
< F(x) meas K + «a ,
where

F(x) = sup{f(t,2) |[te T} < + o,
a = max {0, F(0) meas T} + (I)*(v) < + oo .

The function F is convex, and hence continuous, so that the quantity
k(r) = sup{F(z) | |2 | < 7}

is finite for every 7 > 0. For every measurable £ T and every
r > 0, we have

T ME)| = sup{< =z, W(E) > ||x] =7}
Skirymeas F + a < + o,

It follows that, given any ¢ > 0, there exists a 6 > 0 such that meas
E <o implies |¢(E)| <e. Thus g is absolutely continuous with
respect to df, and ¢ must be countably additive. By the Radon-
Nikodym Theorem, there exists some %* € LY(T) such that

[ <o ur@) dt = < 2, p(B) > = o(a-1,)

for every xzc R" and every measurable E. The formula
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o) = | <ut), w(e)y dt

then holds for every % which is a linear combination of functions of

the form -y, and since such linear combinations are dense in L;3(7T')

the formula must actually hold for every we L3(T) by continuity.
COROLLARY 1. Under the hypothesis of Theorem 4, the convex set

{u* e Li(T) | (I;:)(w*) + <&, w*) + a = 0}

is weakly compact (with respect to the pairing between LL(T) and
L(T)) for any ac Ly(T) and any real mumber «.

Proof. Since I, norm-continuous, the set
fre LYT)* [ (I)*(v) + v(a) + a = 0}

is weak* compact in L3(T)* for any @ and «, according to a theorem
proved independently by Moreau [7] and the author [12, Theorem 7A].

COROLLARY 2. Let D be a subspace of L3(T) supplied with a
locally comvex topology at least as stromg os the wuniform norm
topology, and let D* be the space of continuous linear functionals
on D. Suppose that no nonzero limear functional on L3(T) of the

Jform
”—s ST<u(t), wrey>dt,  w*eILi(T),

vanishes throughout D. Then, under the hypothesis of Theorem 4,
I, is a continuous finite convex function on D, and the conjugate
I)* of I, on D* is given by I,,, in the sense that of ve D* corresponds
to some u* € L,(T) as above one has (I;)*(v) = I;,(w*), whereas other-
wise ([)*(v) = + oo.

Proof. Let J be the convex functional on D* such that J(v) =
I, (uw*)if v corresponds to a w* € LL(T), whereas otherwise J(v) = + oo,
This J is well-defined, in view of the hypothesis about linear funec-
tionals which vanish on D, and the conjugate of J on D with respect
to the natural pairing of D and D*, is just the restriction of I, to
D. By Corollary 1, the convex sets

freD*|Jw) =}, preR,

are compact in the weak topology on D* induced by D, so that J is
lower semi-continuous in this topology. It follows that J = J** = (I,)*.

REMARK. Corollary 2 is applicable, of course, to various situations
where T has topological or differentiable structure, and D is a space
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of continuous or differentiable functions on T (with D* a correspond-
ing space of measures of distributions).
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