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A NOTE ON EXTREMAL PROPERTIES
CHARACTERIZING WEAKLY »-VALENT
PRINCIPAL FUNCTIONS

DeENNIS E. GAROUTTE AND PauL A. NICKEL

On a planar bordered Riemann surface W, a weakly 2-valent
function is one whose every image point has at most 1 anti-
images. In this note, extremal properties characterizing weakly
A-valent principal functions are developed. The functionals
extremized are, in a rather natural way, analogous to those
of the univalent cases. However, the class of competing
functions consists not only of weakly A-valent analytic functions
on W, but of all analytic functions which are i-valent near
an interior point {c W and near the isolated border y of 17,
and are of arbitrary finite valence elsewhere, Such competing
classes contain the 2-th powers of competing univalent functions,
as would be expected. That these classes contain functions of
arbitrary finite valence perhaps would not be anticipated.

An interpretation is given for that situation in which the
competing classes consist of those analytic functions which are
A-valent near two isolated border components.

Since the slit mapping F, of [5] maximizes among univalent
functions of class 4, the functional 27 log »(F') — g log | F(z)| d arg F(z),
it follows that F, interpreted as the A-th power of F|,, maximizes
the functional ¥(F) = 27) log »(F') — S log | F(z) | d arg F(z) among all
A-th powers of functions in A. ?

It would seem rather a natural question to ask whether the weakly
A-valent canonical maps F(z) and Fi(z) of [3] extremize such functionals
¥(F) and @(F'), not only in a class of A-th powers of univalent maps, but
also in a class of weakly M\-valent mappings, whose behavior near the
border and near a preselected interior point ¢, is analogous to that
of functions in A. The answer to this question is essentially in the
affirmative, and indeed, for a surprising reason. Namely, the functions
of class A, in which ¥ and @ are extreme, are required to be A\-valent
only near v, the border of W and near {, an interior point of W — {v}.
The valence of such functions is arbitrary elsewhere on W, and certainly
this class contains the weakly \-valent functions.

Similar results will hold if the bordered surface has two border
components as, for instance, in [2]; namely, the class of functions
over which one may extremize is essentially that class of functions
which are A-valent near the border components. And the valence of
the competing functions, elsewhere on the planar bordered Riemann
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surface, is arbitrary.
However, the functional extremized by the \-th principal function

F}(z) is slightly different than anticipated. It does, however, reduce
to the anticipated functional when special cases such as those of [5]
or [2] are considered.

2. Notation and constructions. In order that the notation be
consistent with that of [3], we consider, on the one hand W, a planar
bordered Riemann surface with an isolated compact border component 7,
and a point ¢, belonging to the interior of W — {v}. On the other hand,
we consider a planar bordered surface V with two compact isolated
border components ¥ and 6. In the development, we shall deal with the
surface W, but shall be able to make interpretations in terms of the

surface V. ~
As usual, W is exhausted by a sequence of approximating bordered

surfaces {W,}, each compact, and of finite connectivity. Furthermore,
for each m, W, has { as an interior point, v for one border component,
and 5, as the union of the remaining border components B8, -+, Bim)-
We shall be concerned with the following class of functions defined
on W,.

DEFINITION. The class H,(\) is the set of functions p(z) harmonic

on W, — {{} such that (i) p(z) = const. = ¢(p) for ze v and S dp* = 2\,
T

(i) the function h(z) = p(z) — Mlog |z — | has a harmonic continua-
tion to £, with () = 0.

By the construction of [4] already employed in [3], we find, in
the class H,(\), the functions pi.(z) and p?.(2). The first of these has
its normal derivative opl,/on equal to zero on S,, while the second
has constant value c,@i(pfn) on each component B; of 5,, with

S dpi,* = 0.
5

Furthermore, these functions are characterized in H,(\) by the follow-
ing extremal properties.

3. Extremal properties for approximating functions.

ProposITION 1. The function pf.(2) maximizes the functional
v.(p) = 2nne(p) — S,’s‘ pdp* among all pe H,(\), and the deviation from

the maximum is Dy (p — pi,).

ProrosITION 2. The function »?,(2) minimizes the functional
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2,(p) = 2mne(p) + SE pdp* — 253 Pi.dp*
among all p € H,(\), and the deviation from the minimum is Dy, (p—pi,).

The proof of each of these propositions is similar to a proof in
[5]. For instance, in Proposition 2, one establishes with the usual
application of Green’s formula, that

(1) Dy, (p—pl)= S7+8pdpiﬂ* — pldp* + gg pdp* — 2&3 phdp*

where 0 is the oriented boundary of a disk with center at {. By
applying condition (ii) for the family H,(\), we find that

Sapdpin* — pldp* =0,
and by applying condition (i), we may write Equation 1 as

(2) Dy (0 = ph) + 2he(ph) = 2m0e(p) + | pdp* — 2| phdp” .
Proposition 2 now follows.

4. Extremal properties for arbitrary surfaces. The uniqueness
of the solutions to the operator equation of [4] implies that the
principal functions p}, are Ap;, (¢ = 1,2). The limit functions p} are
then A-multiples of principal functions of [4]. Each of these belongs
to the following enlarged class of competing functions.

DEFINITION. The class H(\) is the set of functions p(z) harmonic
on W — {{}, whose restriction to W,, for each n, belongs to H,(\).
If, for functions p € H(\), we define the limit functional ¥(p) as the
lim, 7 ,(p), it is only mechanical to check the conditions of the Reduc-
tion Theorem [6] and so establish the following theorem.

THEOREM 1. The function pi(z), and only this function, maxi-
mizes the functional T(p) = 2whe(p) — Sﬂpdp* among all pe H(\).

The deviation of this fumnctional from its maximum 1is, for each
such p(z), equal to Dy(p — Di).

Due to the presence of the last term of the functional @,(p), the
extremal property for the function pi(z) is not as readily established,
and the following sequence of lemmas is presented for this purpose.

LEMMA 1. For the family of functions {pi,(2)}, whose limit is
pi(2), we have the relation lim, Dy (pi, — p}) = 0.
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Proof. We have already observed that »}.(z) = Ap;.(?) for each
n and also that p}(z) = Ap.(2). Hence, the quadratic character of the
Dirichlet integral furnishes us with D, (p! — pl) = NDy, (9, — D).

Furthermore, due to the univalence of Fi(z), it follows that Sﬁ dpf =0

for each contour of the set 5 ,. Certainly, then p.(2) € {p} ofi [5, No.
5] and according to Lemma 2 of that reference, Dy, (p, — p.,) is merely

the deviation 27e(p,) + S_ »dpF — 2me(p,,), and this goes to zero with

increasing n. Hence DW:(p{ — p%) =MDy, (p, — p1,) goes to zero as
well, and Lemma 1 is proved.

LemmA 2. If pe H\), and if for some disk 4 containing
Cy DW—A(p) < o, th@n hmn -Dn'n——d(pin - pir p) = O'

Proof. According to the Cauchy-Schwarz inequality, we have
(DIV"—A(p{n -0, P) = Dli'n—d(pfn - pi)DIVn—A(p) ’
and Lemma 2 now follows directly from Lemma 1.

LEMMA 3. If Dy_,(p) < oo, then lim, Dwn__,(p}n, ) exists for each
pe H(\), and is equal to Dy_,(p}, ).

Proof. By the linearity of the mixed Dirichlet integral, we know
that Dy, _(pis, P) — Dy, (9, P) = Dy, «pln — P, p). Hence our result
will follow from Lemma 2 if lim, Dy, _,(p}, p) exists. Upon using the
Cauchy-Schwarz inequality again, we find

(DWq—Wk(piy D)) = DWq—Wk(pi)DWq_Wk(p) .

Since each of these can be made small, it follows that the sequence
{Dy,-«(pi, )} converges.
For later use, we now draw the following corollary.

COROLLARY. If Dw_,p) < <o, then
lim Dy, (p — pi,) = Dw(p — p)) .
Proof. Certainly it suffices to prove our relation with W, and

W replaced respectively by W, — 4 and W — 4. Due to the linearity
of the Dirichlet integral, we have

(3) Dy D — Dia) = Dy, _ (D) — 2Dy, _ D, pi.) + -DW,,L—A(pin) .

In the limit, the first term becomes Dw_,(p), and according to Lemma
3, the second term approaches —2Dw_,(p, p?). As for the third term,
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we need only observe that
I/DW,L_A(pfn —p) = |1/Dll'n—4(pi'n> - VDII'n—A(pi)J .

Hence it follows from Lemma 1 that the third term on the right in
Equation 3 approaches D#_,(p?), and the corollary is proved.

For each p(z) with Dy_,(p) < <=, we have now established, accord-
ing to Lemma 3, a functional @(p). For the existence of

lim Dll'n—d(p{n! D)

determines, and is determined by the existence of lim, S_ pl.dp*.
B

DEFINITION. For each pe H(\), @(p) is understood as lim, @,(p),
where @,(p) is defined in Proposition 2.

Certainly such is defined if Dj;_,(p) is finite. If, on the other
hand, Dy_,(p) is infinite, then so is lim, D, (»p — pi,). It then follows
from Equation 2 that @(p) is infinite as well.

We are now able to state Theorem 2, which seems to extend the
results of [5] and [2] in that it applies to a wider class of harmonic
functions. The same will be true for corresponding theorems concern-
ing A-th principal analytic functions which are rather naturally
associated with our principal harmonic functions.

THEOREM 2. The function pi(2), and only this function, mini-
mizes the functional @(p) = 2whe(p) + Sﬂpdp* - ZSﬁpidp* among all

pe H\). The minimum value @(p)) is lim, @,(pi,), and the deviation
of this functional from this value is Dy(p — pl).

Proof. Since each p(z) of H(\) is, when properly restricted,
automatically in H,(\), it follows from Proposition 2 that

(4) 2.(p) — G.(pi,) = Dy (p — PL) -

Hence it follows from Lemma 1 that @(p?) = lim, @,(p?,). Furthermore,
it follows from Proposition 2 that @,(p!,) < @,(p) for each pe H(\),
and with the equality just established we have @(p?) < @(p). Hence
pi(z) minimizes @(p) among all pe H(\).

If Dw#_,(p) is infinite, then so are Di(p — p?) and

O(p) = lim @,(p) = lim Dy (p — pia) + 27Ne(pi) -

The deviation formula is understood in the sense that @(p) — @(p?)
and Dz(p — p?) are both infinite. Suppose now that Dy_,(p) is finite.
The deviation formula will follow, according to the corollary to
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Lemma 3, from taking limits in Equation 4.

The Theorems 1 and 2 are valid for bordered Riemann surfaces
V having two isolated border components v and ¢ in the sense of [2].
On such surfaces, the appropriate class H(\) of harmonic functions
p(z) consists of those functions satisfying (i) p(z) = const. = ¢,(p) for
each zev with flux on v equal to 27\, (ii) p(2) = const. = ¢;(p) with
flux on 0 equal to —27\, and (iii) p({) = 0 for some {, an interior
point of V. The harmonic pi(z) belongs to H(\) and is a limit of
functions {p?.(2)}, each with zero flux on B; and constant there; while
pi(2) is a limit of {pl,(2)}, each with normal derivative equal to zero
on B,. Theorems 1 and 2 are now valid verbatim, if only we interpret

c(p) as ¢, (p) — ¢s(p).

5. Extremal properties of weakly A-valent principal functions.
We consider the A-th principal functions Fj(z) = exp (pi(z) + ipi(z)*)
and Fi(z) = exp (pi(z) + 1p¥(2)*) already introduced in [3]. A class of
analytic functions on W naturally associated with the harmonic class
H(\) would seem to be the following.

DEFINITION. The class A(\) is the set of functions F'(z) analytic
on W satisfying (i) for zev, | F(2)| = const. = »(F) and

S d(arg F(z)) = 2@\

T

(ii) F(2) has a A-th order zero at z = {, where lim,_; F'(2)/(z — {)* = 1.
Each of the A-th principal functions of [3] belongs to the class

A(\), and furthermore, for each function F'(z) of the class A(M\), the

harmonic log | F'(z) | belongs to the class H(\) of No. 4. These remarks,
along with Theorems 1 and 2, establish the following two theorems.

THEOREM 3. The \-th principal function FX(z), and only this
function maximizes the functional

27 log r(F') — Sﬁ log | F(2) | d(arg F(2))

among all functions of class A(N). The deviation, for each F(z) € A(\),
from the maximum 1s Dy(log | F(2)/F{(z) ).

THEOREM 4. The \-th principal function FXz), and only this
function minimizes the fumnctional

27N log (F') + Sﬁ log | F'(z) | d(arg F(z)) — 2819 log | Fi(z) | d(arg F'(z))

among all functions of class A(\). The deviation, for each F(z) € A(\),
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from the minimum is Dy(log | F(2)/F(z) ).

It is not difficult to establish that the class A(\) is properly
larger than the class of A\-th powers of univalent functions. For one
need only consider the harmonic p(2) = pi(2) + ¢5(2) — t5.(2). Here,
B’ and B” are components of the ideal boundary B, ¢s;(z) and ¢;.(2)
are the respective capacity functions for these boundary components.
That is, the class {¢} [7, p. 141] is taken as those functions for which

dt* = 27 and | dt* = 0 for each cycle ¢ not separating the point
g from B Then t;(z) is that harmonic function which minimizes
Stdt* in this class. The function ¢;.(z) is defined in an analogous
nfanner. The analytic F'(z) = exp (p(?) + tp(z)*) belongs to the class
A(\) and is according to the appendix of [3], a M\-th power of no
univalent function.
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