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TRANSITIVE AND FULLY TRANSITIVE
PRIMARY ABELIAN GROUPS

PHILLIP GRIFFITH

This paper is concerned with transitivity and full transi-
tivity of primary abelian groups. It is well known that
countable primary groups and primary groups without ele-
ments of infinite height are both transitive and fully transi-
tive. The question of whether all primary groups are transi-
tive or fully transitive was recently answered negatively by
C. Megibben. Megibben's examples indicate that pωG may
be transitive (fully transitive) while G is not transitive
(fully transitive). For β an ordinal number, we investigate
conditions on a primary group G which will insure that G is
transitive (fully transitive) whenever pβG is transitive (fully
transitive). Specifically, we show that if G/pβG is a direct
sum of countable groups and pβG is fully transitive, then G
is fully transitive. The same result is established for transi-
tivity except that β is restricted to be a countable ordinal.

All groups considered in this paper are additively written primary

abelian groups for a fixed prime p. For the most part, we follow the

notation and terminology of [1], All topological references will be to

the p-adic topology. If G is a ^-primary group and if β is an ordinal,

we, define subgroups G[p] and pβG as follows: G[p] — {x e G \ px = 0};

pG = {x e GI x = pg, g e G}, pβG = p{pβ~ιG) if β — 1 exists and

pβQ = Γia<β PaG

if β is a limit ordinal. If x is an element of G and G is reduced we

define the generalized height hQ(x) and the generalized Ulm sequence

UG(x) of x by:

ί β if x Φ 0 and β + 1 is the first ordinal such that

x $ pβ+ιG

• if x = 0

UG(x) — (A), βu * , β%y •) where β{ — hG{pιx) for each integer i.

The generalized Ulm sequences are partially ordered in the obvious

term-by-term fashion, that is, UG(x) iΞ> UG(y) if and only if hG(pιx) ^

KiP^) for all i. We assume, of course, that co > β for all ordinals β.

Following Kaplansky [3], we call a reduced p-group G fully tran-

sitive (transitive) if for each pair of elements x and y in G with

UG(x) Ξ> UG(y)(UG(x) — UG{y)) there exists an endomorphism (automor-

phism) φ of G such that φ(y) — x. Kaplansky has shown in [3] that
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reduced ^-groups in which every pair of elements can be embedded in
a countable direct summand are both transitive and fully transitive.
In particular, countable reduced p-groups and p-groups without elements
of infinite height (i.e. pωG = 0) are both transitive and fully transi-
tive. Kaplansky suggested that all reduced p-groups might be such.
However in [4], Meggibben exhibited a class of p-groups which are
neither transitive nor fully transitive. A group G in this class has
the following properties:

(i ) pωG is transitive.
(ii) Not all endomorphisms (automorphisms) of pωG are induced by

endomorphisms (automorphisms) of G.
Note that in order for (ii) to hold, G must be uncountable. The above
observations lead to the consideration of the following questions:
Under a suitable hypothesis that ensures that endomorphisms (automor-
phisms) of pβG are induced by endomorphisms (automorphisms) of G,
does it follow that G must be fully transitive (transitive) whenever
pβG is fully transitive (transitive)? In view of recent investigations
by Nunke [5] and Hill and Megibben [2], the restriction we shall im-
pose on G is that G/pβG be a direct sum of countable groups. With
this restriction on G/pβG, affirmative answers are given in the present
paper to both of the above questions-with the reservation that β be
a countable ordinal in the case of transitivity. Although the two
concepts of transitivity and full transitivity might seem clearly related
(there is some relationship, as is illustrated by Theorem 26 in [3]), the
methods of proof are quite different. In dealing with the problem of
full transitivity, the main result needed is one by Nunke [5]; where-
as we rely on techniques of Hill and Megibben [2] for our result con-
cerning transitivity.

2* Fully transitive primary groups* In what follows, the sym-
bols Σ a n d + will be used for direct sums; whereas the subgroup of
a group G generated by its subsets S and T will be denoted by {S, Γ}.

LEMMA 2.1. Let G be a p-primary group such that G/pβG is a
direct sum of countable groups for some ordinal number β. Let A
be a finite subgroup of G and S = {pβGy A}. If Θ is a homomorphism
of S into G which does not decrease heights (computed in G), then θ
extends to an endomorphism of G.

Proof. Consider the commutative diagram

0 >S > G—+G/S >0

1' 1* . I
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where M = (G + G)fN, N = {( — θ(s), s) \ s e S} and p, π and f are defined
by p: g -> (g, 0) + N, π: (g19 g2) + N-* g2 + S and ψ: g — (0, g) + N. In
the remainder of the section, we shall use the notations G* — ρ(G)
and (gu g2) for (gt1 g2) + N in M. To show that θ has the desired ex-
tension, it suffices to show that the bottom row of the above diagram
splits, that is, it is enough to show that the exact sequence

0 > G* > M • M/G* > 0 splits.

We observe that ikf/G* is a direct sum of countable groups and that
pβ(M/G*) = 0. This follows since M/G* = G/S, S = {pβG, A} where A
is finite, and since G/pβG is a direct sum of countable groups such
that pβ(G/pβG) — 0. Hence, ikf/G* is ^-projective which implies
pβ Ext (M/G*, G*) = 0. (For definitions of p^-projective and ^-purity
see [6]). Thus, we need to show only that 0 -> G* — M — M/G* ~-> 0
is p^-pure exact. Since pβ(M/G*) = 0 and since M/G* is a direct sum
of coutable groups, by applying Theorem 2.9 of [5], we can reduce
the proof to exhibiting pa(M/G*)[p] = {G*, (paM)[p]}/G* for all a < β.
We shall need the following technical lemma.

LEMMA 2.2. (The notation and setting is as above). If a < β and

x e pa(M/G*), then there is an element w e paG such that x = (0, w)J

ΓG*.

Proof. The proof is by induction on a. For some u e G, we have

x = (0, u) + G*. Suppose the assertain holds for all ordinals δ < a,

a < β, and that xepa(M/G*). If α — 1 is defined, x — py for some

y e pa~ι(M/G*). By the induction hypothesis, y = (0, v) + G* where

v e p^'G. Therefore, (0,u) + G* = p(OT^) + G* implies (0~^) =

) + (?Γθ) where (pvδ) e G*. Then (0, %) = (0, pv) + (gr, 0) +

( — θ(s)y s) for some s e S. Now s = b + α where δ epβG and α e i .

Thus, we have u = pv -{- s = pv + b + a, which implies u — a = pv +

b G pαG. Since aeA, (0, - α ) = (^^(α), 0) e G*. Hence, setting w =

w — α, we obtain w e ί9αG and x = (0, %) + G* = (0, w) + G* since

(0, w) = (0, u - a) + ( - ί ( α ) , 0). If a is a limit ordinal, pa{M/G*) =
Γ|δ<^δ(M/G*). By the induction hypothesis, x = (0~*Γ) + G* = ( M l ) + G*
where ^δ e pδG for all 5 < a. Hence, (0, u) = (0, vδ) + (̂ rδ, 0) where
(g~0) e G*, for each δ, yields (0, w) - (0, vδ) + (^δ, 0) + (-θ(s9), sδ)
where sδ e Sy for each δ < a. Now s5 = bδ + αδ where bδ e phG and
αδ G A. Since A is finite, there is a subset [δλ]λeA of ordinals less than
a such that sup [δ; | λ e J] = a and αJ;ι = α for some aeA and all XeA.
Hence, u — a = vδχ + bδχep8λG, for each XeA, implies u — aε Γ\χeΛp

8κG.
But rixeAP**G = Πδ<ap

8G = paG since sup [δλ \ λ G Λ] = α. Thus setting
w = % — α, we again obtain w e pαG and a? = (0, w) + G*.

We now establish pα(M/G*)b] - {G*, (pαM)[p]}/G* for all α < β.
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Suppose x G pa(M/G*)[p]. By Lemma 2.2, x = (0, w) + G* where

w 6 pαG. Now p(OΓw) e G* implies p(0, w) — (g, 0) for some g e G,

which yields (0, pw) = (#, 0) + ( — #(s), s) where se S. Therefore,

pw = sepa+1G and θ(s) = g epa+1G since θ does not decrease heights.

Thus, g = ph where hepaG. We have that x — (0, w) + G* =

( —fc, w) + G*, where ( — h,w)e (paM)[p\ since h,wepaG and since

p( — h, w) = ( — ph, pw) = ( —#(s), s) = 0 G ikf. Thus, we have shown that

2>*(ikf/G*)[p] £ {G*, (^αikf)[^]/G*|. The reverse inclusion is clear, thus

the proof is complete.
We are now ready to prove the main result of this section.

THEOREM 2.3. Let G be a p-primary group and let β be an
ordinal number. If G/pβG is a direct sum of countable groups and
if PβG is fully transitive, then G is fully transitive.

Proof. Let x,yeG such t h a t UG(x) ^ UG(y) and let pn be t h e

order of x + pβG in G/pβG. Therefore, pnyepβG since UG(x) ^ UG(y),
and furthermore UpβG(pnx) ^ UpβG(pny). Since pβG is fully transitive
by hypothesis, there is an endomorphism φ of pβG such that φ(pnx) =
pny. Set S = {x, pβG} and define θ: S~>G by 0(m# + 6) = my + £>(&)
where b e pβG and m is an integer. I t is straight forward to check that
M s a homomorphism. To show that θ does not decrease heights
(computed in G), it suffices to consider mx + beS where bepβG and
mx <t pβG. But hG(mx + b) — hG(mx) since b e ^ G and since m# g p^G.
Therefore, hG(mx) ^ min [/^(m^/), feσ(9>(6))] implies that hG(mx + 6) ^
hG(θ(mx + 6)). Thus 0 does not decrease heights computed in G.
Applying Lemma 2.1, we can extent θ to an endomorphism of G.

3* Transitive primary groups* In this section, our insistance
that β be a countable ordinal in Theorem 3.4 arises from the same
restriction in Theorem 4 in [2]. Observe, however, that the only case
left to be dealt with is that when β is the first uncountable ordinal.
Theorem 3.4 first requires the following lemmas.

LEMMA 3.1. Let A and B be isomorphic countable p-groups and
let β be an ordinal. Suppose ae A and b e B such that UA(a) = UB(b)
and further suppose pn is the order of a + pβA in A/pβA. If φ is
an isomorphism of pβA onto pβB such that φ(pna) = pnb, then φ ex-
tends to an isomorphism φ of A onto B such that φ{a) — b.

The proof of this lemma is the same at that of Zippin's Theorem
[7] which states: If G is a countable reduced primary group, then
every automorphism of pβG is induced by an automorphism of G.
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LEMMA 3.2. Let G be a p-group and let β be an ordinal. If C
is a pure subgroup of pβG and if H is a subgroup of G such that
G/C = H/C + pβG/C, then paG Π H = paH, for all a < β.

Proof. The proof is by induction on a. Suppose the assertain
holds for all δ < a, where a ^ β. If a is a limit ordinal, then
paH = Πs<aPδH = Πs<aiPδG f]H) = (Πs<aPaG) n H = p°G Π H. There-
fore, we may assume a — 1 is defined. Suppose x e pa~~ιG such that
px = hoe H. Since G = {if, pβG}> x = h + y where h e H and y e pβG.
It follows that h = x — y e pa~ιG Π H = pa~ιH by the induction hypoth-
esis. Since py = h0 — ph e H Π pβG = C, then py ~ pc, for some c e C
where c e p^G Π jff C Pa~ιG n H = ^"'-HΓ. Thus, px = p(Λ + c) and Λ, + c
€ p^-'iϊ. Hence, paG Γ\ H = paH.

LEMMA 3.3. Let G be a p-group such that G/pβG is a direct sum
of countable groups and let β be a countable ordinal. Suppose pβG
is transitive and further suppose there is an automorphism θ of G
such that θ(a) = b whenever a and b satisfy:

(i) Uσ(a) = UG(b)
(ii) pna = pnb where pn is the order of a + pβG in G/pβG.

Then G is transitive.

Proof. Let α, b e G such that UG(a) = UG(b) and let pn be the order
of a + pβG in G/pβG. Since Ue(a) = UG(b), then pnbepβG and
UpβG(pna) — UpβG(pnb). Applying the transitivity of pβG, there is an
automorphism σ of pβG such that σ(pna) = pnb. Since G/pβG is a direct
sum of countable groups and since β is a countable ordinal, a extends
to σ an automorphism of G, by Theorem 5 [2]. Set ax = σ(a). There-
fore, pna1 = pnb and UG{a^) — UG(a) = UG(b) since σ is an automorphism
of G. Thus, aι and 6 satisfy (i) and (ii) of the hypothesis, and hence
there is an automorphism θ such that θ(aι) = b. Setting ψ — θσ, we
obtain an automorphism of G such that ψ(a) — b.

We now state the main theorem of this section.

THEOREM 3.4. Let G be a p-primary group and let β be a count-
able ordinal. If G/pβG is a direct sum of countable groups and if
pβG is transitive, then G is transitive.

Proof. Let a,beG such that UG(a) = UG(b) and let pn be the
order of a + pβG in G/pβG. By Lemma 3.3 we may assume pna — pnb.
There is a pure dense subgroup C of pβG such that pna — pnb e C and
such that C is a direct sum of countable groups. Choose subgroups
H and K of G such that a e H, b e K and such that
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G/C = H/C + pβG/C = K/C + pβG/C .

By Lemma 3.2, p?H = pβGf]H = C = pβGf]K = pβK. Since C is a
direct sum of countable groups, pβH = pβK = C, H/C = G/pβG = K/C,
and since β is a countable ordinal, it follows from Theorem 4 [2] that
the identity automorphism on C may be extended to an isomorphism σ
of H onto if. By Proposition 2.13 [5], H and K are both direct sums
of countable groups. Using the isomorphism σ, we can find decom-
positions of H and K, respectively, which satisfy:

( i ) H = A + S and K = B + T; aeA and 6 € 5 .
(ii) A = B and S = T under the isomorphism σ.
(iii) pβA = pβB and p^S = pβT.
(iv) | A | = | B | ^ « 0 .
Since paGΠH = paH and ί?αGΓ\K = paK for all α ^ /9 by Lemma

2.3, since pna — pnb where pn is the order of a + p^G and 6 + pβG
in G/pβG, and since Σ7G(α) = ί7G(6), it follows that UH(a) = i7x(6). Hence,
C/̂ (α) = J7B(6). Thus, letting φ be the identity automorphism on
pβA — p ^ ^ and applying Lemma 3.1, we obtain an isomorphism φ of A
onto B such that φ (a) — b and such that φ extends φ. Since S and T
are isomorphic direct sums of countable groups with pβS — pβT and
since β is a countable ordinal, by Theorem 4 [2] there is an isomorphism
ψ of S onto T such that -f is the identity on pβS = pβT. Hence, by
defining θ(a + s) = φ(ά) -f- ψ(s) where aeA and s e S, we establish an
isomorphism θ of H onto if such that θ extends the identity automor-
phism on pβH = pβK = C and such that 0(α) = 6. The proof is completed
by extending θ to an automorphism ί of G by defining θ(h + x) =

+ x for Λ G H and a e p
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