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INVARIANT MEASURES AND CESARO SUMMABILITY

HowARD WEINER

It is known that if T is a one-to-one, measurable, invertible
and nonsingular transformation on the unit interval with a
o-finite invariant measure, then its induced transformation T
onL; functions f is such that lim,—. 1/n 3% T¥f(x) exists, In
this note, a counterexample is constructed which shows that the
converse is false.

Ornstein [4] constructed a linear, piecewise affine transformation
on the unit interval which has no ¢-finite invariant measure. Chacon
[1] accomplished the same objective by constructing a transformation
T whose induced transformation on L, functions f, denoted here by
T,, was such that

1 n

lim inf—q;- S, Téf(x) = 0 a.e., and
n~—ro0 k=1

(1) "
lim sup—;- S Trkf(x) = < a.e.,
n—co k=1

since it is clear that T cannot have a o-finite invariant measure if the
sequence {1/n >\*_, T¥f(x)} does not have a limit. (See also Jacobs
[3].) The question arises as to whether the converse holds: if
lim,_ . 1/n > TEf(x) exists, then T has a o-finite invariant measure.
It is the purpose of this paper to show that this statement is false
by constructing a linear, piecewise affine transformation T' on the
interval I = (0,101/100] such that its induced transformation T, on L,
functions f satisfies

(2) lim -1 3 TFf(x) = 0 ae.

noee W k=1

Section 2 gives the construction of T, §3 contains the proof that
T has no o-finite invariant measure, and § 4 shows that the induced
transformation, T, satisfies (2).

The author is indebted to D. Ornstein for suggesting the method
of construction of 7, which parallels his construction in [1]. (See
also [3].)

2. Construction of T. The transformation of T will be defined
inductively step-by-step, and completely constructed in a denumerable
number of steps. At each step, the domain of T will be extended to
a subinterval of (1, 101/100], and T will not be altered where once
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defined.

At the first step, let 7' take (0, 1/2] onto (1/2, 1] in an order-
preserving, affine way. Break up the interval (1, 1 + (100)~'/2] into
10° disjoint subintervals each of equal length 10-%/2. Denote (0, 1/2]
by I,, (1/2, 1] by I,, and number the 10° subintervals just defined left to
right by I, .-+, I, ---, I, LetT take I, onto I, Iyonto I,, - -+, I,
onto I, ,, in an order-preserving, affine way.

The domain of T will now be extended to some part of L,
using the method of [1]: split I, into two subintervals of equal length
I, = (0, 1/4] and I, = (1/4, 1/2]: split I, = (1/2,1] into I, = (1/2, 3/4]
and I, = (3/4,1]. Similarly define I;, and I;, for 3 <75 < 10° 4+ 2. It
is clear that T already takes I; onto I;,,, for 1 <5 <10°+ 1. Now
split up all intervals I;,, 1 <7 <10° + 2 into 10° subintervals of equal
length. By an obvious left-to-right numbering scheme, I,, will be the
union of consecutive disjoint subintervals I;,,, I; .., -+, I; 1.5 called
the right part of I;. I, is called the left part of I;,. It is clear that
T already takes I;,, onto I;,,,, for 1 <7=<10°+1,1 <1 <10°inan
order-preserving, affine way.

The domain of T will now be extended to the subinterval

I

16842

103—1
- Imﬁ+z,z,1o3 = I106+2,1 U (lejl Imﬁ+2,2,l> ’

as follows. Let T take I, , onto I,,, and [, , onto [, for
1<1<10° -1 in an order-preserving, affine way. Now relabel all
intervals from left to right I, ---,I,. This completes step one.

At the end of step » — 1, relabelling the intervals in an obvious
way, T takes interval I; onto I;,, for 1 < j < M, in an order-preserving,
affine way. T is not yet defined on I,,, and T will now be defined
on part of I, . Split I, into 10* subintervals of equal length, and
order them from left to right as I,, +1,---,I, , where N, = M, + 10%.
Now let T take I; onto I;,,, M, < j < N, in an order-preserving, affine
way. The domain of T will now be extended to some part of I,
using the method of [1].

For 1 £j < N,, split I, into two disjoint intervals of equal length,
written I;, and I;,, numbering from left to right. Divide the right
interval I;, into 10°* disjoint subintervals of equal length, and denote
them, from left to right, by I;,;,,1 <j <N, and 1 <1 <10, It is
clear that T already takes I, onto I,,,, and I;,, onto I;,,,; for
1<j<N,—1and1=<1<10*", The domain of T will now be extended

37 __
to I, — Iy, = Iv.. U (myl IINn,Z,l). Let T take I, onto I,,, and
Iy, ..onto I, inan order-pfeserving affine way for 1 <110 — 1,
This completes the definition of T at the n™ step. Now relabel all
intervals from left to right as I,,I, ---, I, ,, to prepare for the
n + 1% step.
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3. Invariance properties of T.

DeFINITION. ([1],[3]). Two sets, E, F, are said to be finitely
T-equivalent if they allow finite disjoint decompositions £ = >}, E,
and F = X7 F,, such that for appropriate r,, T*E, = F.

THEOREM. 7T has mo o-finite invariant measure.

Proof. We let m, denote Lebesgue measure. It suffices to show
that T has the following property (See |1], [3] pp. 58-60, which this
treatment follows):

For any integer » and any set M < I, such that m,(M) > 9/10
there is a set of » mutually disjoint and T-equivalent subsets M, - - -,
M, contained in M such that m.(M,) > 1/8.

To show that this property holds, it suffices to choose M (0, 1]
such that m,(M) > 9/10. At step », suppose JIC(0,1] where the
union is taken only over those subintervals containing a subset of M.
Renumber the subintervals J,, J,, - - -, J,, where T or its positive powers
takes J, onto J,,,, 0 =1,2,..-, P — 1, Suppose E = {I: J,C Uiz [,}.
By the construction, m(U,.» J,) = 1/2.

Let L =max{l:le E}. Assume 7 >n. Then for L<s<P,J is
in the right part of the scheme and hence

(38) my(J,) <10~ < 1/100nL, since L ~ 10°. From this point
on the proof is formally identical with that in [3], p. 60. This obser-
vation completes the proof.

4. Convergence of Cesaro sums.

DerINITION. The transformation on L, functions f induced by T,
denoted by T,, is defined for x,e (0, 101/100] as

T.f (@) = f(T@)R(T, @, @) ,

where T'(x,) = », and R(T, x,, ,) denotes the suitable Radon-Nikodym
derivative of T defined almost everywhere which insures that

£101/100

S:m“le s = " f@da

T, is well defined. It is clear how to define powers of 7,. This
may be expressed as T/f(x,) = f(T"(x))R(T", 2, x,), where T"(x,) = x,
and R(T", x,, ;) denotes the Radon-Nikodym derivative which insures
that

101/100

S:Ol/mOT{‘f(x)dx - SO ™ fe)de .
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Note that R(T", z,, %) is easy to compute. If T"(x,) = 2, and
x, €I, and z,¢€ I, where I, and I, are intervals defined together in
the same step in the definition of T such that m = [, then

(4) R(T*, @, @) = my(I,)/my(I,) = length (I,)/length (1,,)

due to the piecewise affine character of 7.
In order to show that for fe L,

(5) lim-L S Tif(z) = 0 ae. wel

n—oe Y, k=1
is suffices to show (5) only for f=1. This is so because if (5) holds
for f =1, by the Chacon-Ornstein theorem [2], for any ge L,,

lim i Tl"g(x)/i Tkf(x) exists a.e. xel,
n—o0 k=1 k=1
and hence

lim—l—zn‘, Tkg(x) =0 a.e. xel.

n—os 1, k=1

Thus it suffices to prove the following.
THEOREM. For f=1

lim-L S TEf(x) = 0 ace. wel.

n—o N, k=1

Proof. The proof is divided into two cases; (a) xe(0,1] and
(b) ze(1,101/100].

Case (a). Recall that M, is the number of subintervals on which
T or its range was defined at step n. Note that the point =1 is
in the R,-th interval at step », where R, = M, — 3\7_, 10%.

Define f,(1) = 1/R, 3.5 Tif(1). Then f,(1) is clearly the Cesaro
sum of highest index (R,) which can be defined at step n at the point
2 = 1 among the sums 1/p X7, T!f(1). Also, for xze(0,1], R, is the
maximum index p such that 1/p 37, T/f(x) may be defined at step n.

Claim 1. fu(1) < 10 x 0(10*").

Proof. Proceeding by induction, we first obtain an upper bound
for fi(1). The point # =1 is in interval I, — 10° which is of length
1/4 x 10~* and the intervals that map into I, at step 1 by T or its
positive powers are each of one of the following types:

Type 1. I,, I, each of length 1/4, and hence each contributing 10*
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to the sum Zf;‘l Tif(1) by (4);

Type 2. L, -+, 1., each of length 1/4 x 10~%, and so by (4) each
contributing 10~° to the above sum;

Type 3. 11064-3’I1o6+4’szmﬁ+5’sz106+s’I3><106+7’Is><106+s’ Tt ’I<1o3-1)106+2(1o3—1)+1v
Ity €ach of length 1/4 x 10—°, and hence each contributing
1 to the sum; and

Type 4. Il°6+5’ IR 12X106+4’ I2’<106+7’ st106+6’ IR [(103——1)X103+2(103-1)+3’ IR
Ligox 16y +2005-1) 43, €ach of length 1/4 x 10-*, and hence contributing 10-*
to the sum.

Multiplying the contribution of each type of interval by a number
at least as large as the number of each such interval, adding these
four terms, and dividing by a number smaller than the total number
of summands R, yields the following upper bound

2X10°+10°x 10°410°x10° x 10+ 2 x 10° x 1
(6) £(l) < i

or fi(1) <6 x 10-°

108" (b) (e)
{1}
Ruy @ @
~.
— 07—
FIGURE 1.

Consider the above diagram representing the four types of domain
of definition on which 7' and its positive powers are defined at step
n. The domain (a) is the set of left parts of (0, 1] together with the
left parts of the subintervals of (1, 101/100] added to the domain before
step n. Domain (b) is the set of left parts of the subinterval of
(1, 101/100] added to the domain of definition of T at step n. Domain
(c) is the right part of the subinterval added to the domain of 7 at
step #n. Domain (d) is the right part of (0, 1] together with the right
part of the subintervals of (1,101/100] added to the domain before
step #. The numbers on the diagram refer to the respective number
of subintervals into which the left parts right parts, of (0,1] and
appropriate subintervals of (1,101/100] are divided at the n™ step.

Using an obvious notation,

(1) RAD=ETHO =3+ 3+ 3+ ST/,
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where
(8) ST () = fau(Ry x 107,

since the length ratio of left part intervals to the corresponding right
part intervals is 10°";

(9) STIF(L) = 107 x 2 x L x 2% % 105 x 10"
5 200
et ._];.. X 102?=13j
200 ’

where 10" x 2-" x 1/200 is the length of a (b) interval, 2-" x 1075
is the length of the (d) interval containing the point 1, and 10" is
the number of (b) intervals;

1

10 ST = 200

X 27" % 107" x 107" x [102?“” X 2”]

% 10 x 10" = £ x109=*
200

since each subinterval of (c) has length ((100) x 2"+' x 10°+**)~'  the

subinterval containing the point 1 has length (1027=135 X 2")~* and there
are a total of 10°"+*" subintervals in (c);

(11) 2 Tif Q) < By fami(D) x 107

since there are 10°" sets of intervals on which 7' and its positive
powers were defined at the n — 1% step in (d).
Clearly

(12) R, < 10+,

Hence from (6) — (12) inclusive,

n 1 % 3f
2fn_i(1) x R,_; x 10°" 4+ 2 x (2—0—6) X 1021—131

13)  £O< e

By the induction hypothesis, f,_,(1) = 10-"7" x 0(10°"7").

Using this in (13), f,.(1) < 10" x 0(10*"), completing the induction
argument.

Now congsider € (0, 1] such that in addition, « is in the right
part of the scheme. In the diagram below, at step n», the second
subinterval in the right part of the scheme which is also a sub-
interval of (0,1] is denoted by Q. This interval is I,, where », =
M, , + 10" +1>10" Let z,€Q.
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(b) (d

FIGURE 2.

Claim. Suppose » is such that M, >» > M,_,, and 2<(0,1] and
also in the right part of the scheme at step n». Then under these
conditions,

1

)

1
/A

r 70
(14) max = 3 Tif(@) = —— 3 f(@) .
This is clear since the largest Radon-Nikodym derivatives in the above
Cesaro sum come about as a result of T and its positive powers taking

points from the left part of the scheme to its right part.
Clatm 2. At step n,

(15) Tif (@) < fuo(1) .

1 &
ry i=1

Proof. From the above diagram,

(16) S Tif@) = 5+ 3+ S TH@)
where
an SUTIf@) = 107 % Mo % fu(D),

(18) 3 Tif(n) = (2000~ x 27 x 107" x (10792 20) % 10" <107,
(b)

and,
(19) %. Tif(x) = M,y X fai(1) .

Hence from (15) — (19),

1 S iy (10" + 1) x M, , X fu (1) + 10"
> S < i
(10" x 10T e (1) + 107

o < fu).

This establishes the claim.
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Now a.e. € (0,1] is in the right part of the scheme for infinitely
many steps 7 since at each step, every subinterval is divided into two
equal subintervals, one of which becomes a member of the left part
of the scheme, and the other, the right part. Further, higher powers
of T!f(x) can only be defined at a given stage n if « is in the right
part of the scheme. These remarks plus Claims 1 and 2 above estab-
lish that

lim - 3" T1f(1) — 0 for a.e. xe(0,1],
r—oo P l=1
which is case (a).
For case (b), let xe(1,101/100]. The procedure to be followed
parallels that in case (a).

1

Define flk(l + (100)* x iw) -
l=1 h

My r
S T f(1 + (100) X 22--1) ,
=1 Jj=1

where k= r +1 and M, = M, — 3}¢.,.,10¥. That is, M, is the
highest power of T that may be defined at step & with domain on a
part of the 7 subinterval (1 + (100)~* x 27,1 + (100)~* x 2-7+!] which
is taken from (1,101/100].

Claim 3. fu(l + (1007 X 35, 27) = 107 x 0(10*~)* — 0
for fixed r as k— .

Claim 4. Let
ve (1 + (100)~* x ’gz—f), 1+ (100" x 3, z—f] :

Suppose that at step & > »,x is in the right part of the scheme.
Then for

M r
M > Niyy == 3 TiF(@) < fuso1+ (001 x $279) .
M= i=t

The proof of Claim 3 follows as for Claim 1, and that for Claim
4 as for Claim 2, The proofs use the fact that 10°* > 10* as » in-
creases, The details are omitted.

Since a.e. xe(l,101/100] is in the right part of the scheme for
infinitely many steps %, and since higher powers of T}!f(x), for fixed
x, are defined when z is in the right part of the scheme at some step,
Claims 3 and 4 yield the result for case (b).
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