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CONVEX SETS AND THE BOUNDED
SLOPE CONDITION

PHiLiP HARTMAN

Let 2 be a bounded open convex set in R* with boundary
I'. This paper concerns the class B(I") of functions ¢(x), de-
fined on I, satisfying a bounded slope condition and its closure
B(I') in CYI"). The class B(I") is of interest because of its
occurrence in the theory of nonlinear, nonuniformly elliptic,
boundary value problems. It is shown that B(I") is the set
of continuous functions on I" which, on flat pieces of I', are
restrictions of linear functions of 2. Thus B(I") = C«I") if
and only if there are no line segments on /.

1. The set B(I'). Let 2 be a bounded, open subset of R and
I' = 02 its boundary. A function ¢(x) defined for ze [l is said to
satisfy a bounded slope condition (BSC) with a constant K(=0) if,
for every point x,e I', there exists a pair of linear functions 7*(x) of
x € R satisfying

TH@) = 3 af (@t — @) + ¢(w) = a*-(x — @) + 6,
(1.0 = i
(%) < ¢(x) < 7@ for wel, 3 |ap = |at [ < K* .

For example, any linear function ¢(x) = a.x + b, restricted to I,
satisfies a BSC with K* = |a[*. On the other hand, if some function
#(x), ze I, is not the restriction of a linear function and satisfies a
BSC, then

1.1) Q2 is convex .

Below, we shall always assume (1.1).

The bounded slope (or an equivalent) condition occurs in the
calculus of variations and the theory of nonlinear elliptic boundary
value problems in papers of Hilbert, Lebesgue, Bernstein, Haar, Rado,
von Neumann, etec., for recent references (e.g., to Nirenberg, Gilbarg,
Stampacchia, and others), see [1], [2], [4, pp. 98-105], [5]. Since
there are existence theorems for certain nonlinear, (nonuniformly)
elliptic, Dirichlet boundary value problems on 2 with an arbitrary
given boundary function ¢ in B(I"), where

1.2) B(I") = {¢(x), x € I": ¢ satisfies a BSC},

it seems worthwhile to examine the set of functions B(I").
Two results along these lines are the following, given in [1, pp.
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504-505]:

(i) I'eC'=B(I")cCYI);

(i) I'eC**, 0 <M< 1=BUI")cC C“XI).

The convex set 2 or its boundary I" is called uniformly convex
if there exists a constant ¢ > 0 such that through every x,e I, there
passes a hyperplane = < R™ supporting I and having the property that

1.3) dist(z, ) =clx — 2, for xel.

The class C**I") will be defined as the set of functions ¢(z),xe ",
which are restrictions to I" of functions of class C**R"). (This
generalizes the usual definition of class C**(") which requires that
I'e C*?)) Several authors have used the fact that

(iii") ' is uniformly convex = B(I") D C*}(I");
for a detailed proof, see [3, p. 242]. Actually, the converse of this
statement is also correct:

(iii) I is uniformly convex < B(I") D CH'(I").
As noted in [1], (ii) and (iii") give the following assertion:

(iv) I'eC*' and I" uniformly convex = B(I") = C*(I").

Proof of (iii). In view of (iil"), it is sufficient to verify the fol-
lowing converse of (iii’):

(ili”) ' is uniformly convex <= B(I") 3 ¢(x) = |z >,z e .
Suppose, therefore, that #(x) = |z [, x € I", satisfies a BSC, so that
there exists a constant K and, for every z,€’, a linear function
nt(x) satisfying (1.0). Note that ¢(x) = |¢P = |& — @, + @,|* satisfies

¢(9(J) = |90 — X |2 + 22, (x — mo) + ¢(xo) .
Thus, by (1.0),
1.4) (¥ — 2x)(x —x) = |z — 2,* =0 for xel.

Hence a* — 2z, # 0, and the hyperplane 7:(a* — 2x,)-(x — x,) =0
passes through x, and supports 2. By (1.0), ja* — 22,| = K + 2R, if
Q is contained in the sphere |2| < R. Since z ¢ 2 implies that

0= (at — 2mp)-(x — =) = |a+ — 2x,] dist (x, 7) ,

(1.4) shows that the inequality (1.3) holds with ¢ = 1/(K + 2R). This
proves (iii”).

2. The set B(I). In [3], M. Miranda obtains generalized solu-
tions for the Dirichlet boundary value problem associated with the
minimal surface equation and a boundary function ¢(x) in the set

(2.1) B(I") = the closure of B(I") in C°(I") .
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Actually, Miranda assumes that I” is uniformly convex [so that B(I") =
C(I") by (iii")] and deals with an arbitrary ¢(x) € C°(I"). His procedure
is valid, however, if it is not assumed that I" is uniformly convex
but merely that g¢(x) € B(I"). Since his arguments apply equally well
for other boundary value problems (cf., e.g., [2]), it is of interest to
investigate the set of functions B(I") and, in particular, to see when
B(I") = CYD).

The following terminology will be used below: A subset 4 of I,
which is neither empty nor a point, is called a flat piece of I' if there
exists a hyperplane 7 supporting @2 and 4 =7 N I". A point x,e " is
called an extreme point of I' if it is not an interior point of a line
segment on I". 2 or I' is called strictly convex if every point x,e I’
is an extreme point (i.e., if there are no line segments on I'). As
usual, ¢ |2 denotes the restriction of the function ¢(x) to the set
xel., Let

Ay = {p(x), x e "¢ € C(2); on every flat piece

2.2 . .
(2.2) 4 of I'y¢ | 4 is the restriction of a linear function},
or, equivalently,

A = {p(x), xe ¢ C(I"); on every line segment
lcr, ¢|l is the restriction of a linear function}.

It is understood that A(I") = C(I') if I' is strictly convex. The main
result to be proved in this paper is

(I) ’ B(I') = A(D) ;
in particular,

(II) I" is strictly convex — B(I") = C°(I) .
The proof will be given in § 5.

3. The functions ¢" and ¢,. It will be assumed that
(3.1) o=0ecQ

Let (z,u) = (2, ---, ™, u) denote coordinates in R**'. With a function
¢€ C'(I") and a number # satisfying

3.2) lg@)| < » for eI,
associate the following sets in R"*!;
3.3) Z(r,9) = {x = tw,, u = r + t[¢(x,) — r] for x,e",t = 0},

(3.4) W(r, ¢) ={x =te,u=—7r+ tj¢(x,) + r] for x,el",t = 0}.
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The boundary G*(r, ¢) of Z(r, ¢)[G~(r,8) of W(r, 4)] is a cone with
vertex at (x,w) = (0, r)[(x,u) = (0, —7)] which opens downwards
[upwards]. These cones were introduced in [1]. The convex hull of
Z(r, ¢) is the set of points (z, u) satisfying

A

(3.5) T = i Nitx, w =+ i Niti[p(x;) — ],

where \; = 0,3\, = 1,¢, = 0,2, e ", m > 0 arbitrary. If T = I\;t; >0
and g; = \t,/T, then (3.5) can also be written as
(3.6) o= TS pw,w<r+ TS plp) - r],

=1 =1

where pt;, > 0,3u, =1, T = 0,2, ", m > 0 arbitrary.
On R", define the function

3.7 §@ = sup{r + T3 mls(@) — 11},  we R,

where the supremum is taken over the set

(3'8) S(w) = {(T) Hay ooy By Lyy '/’vm) . Té /’eixi = x} )

and, as in (3.6), =20, u; =0,3y; =1,z,€",m > 0 arbitrary. It is
clear that

#"(x) = sup {u: (x, u) in (3.6), « fixed},
so that the closed convex hull of Z(r, ¢) is the set
3.9) co Z(r, ¢) = {(x, u): u =< ¢"(x), x € B} .
It is also clear that
(3.10) or(tx) = r + t[g"(x) — r] for xec R, t = 0;
hence
8.11) co Z(r, ¢) = {x = ta,, u < r + t[¢"(x,) — r] for x,el",t = 0} .
Similarly, the closed convex hull of W(r, ¢) is
(8.12) co W(r,¢) = {& = tzg, u = —r + tlg, (%) + r] for w,e ", t = 0},

where
(13) @) = int{—r + TS pls@) + 1lf 0 R7,

and S(x) is given in (3.8). From (3.9) and its analogue, it follows
that ¢"(x) is a concave and ¢,(x) is a convex function of ». In parti-
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cular, ¢7, ¢, € C°(R").
ProprosITION 3.1. Necessary and sufficient in order that ¢ e B(I")
is that ¢ = ¢"|I" = ¢, | for large 7.
This is merely a restatement of [1, Th. 2.1, p. 496].

ProprosiTiON 3.2. (a) The functions ¢, ¢", ¢, satisfy

(3.14) $.(2) = ¢(2) < ¢"(2) for xel .
(b) If ¢,4veC(I") and ¢ < 4 on I', then

(3.15) $.(2) = P,(), ¢"(®) = ¥"(x) on I".
(¢) Finally

(3.16) (¢"| )" =¢" and (3, |I"), = ¢, .~

Proof. The choice (T, p, ) = (1,1,2)e S(x) for xel” implies
(3.14) by (3.7), (3.13). The other assertions are trivial.

ProprosiTION 3.3. Let |g¢(x)| < M on I" and r > 2M + 1 be fixed.

Let xeI". Then there exists a T and a Borel probability measure p
on I', depending on z and 7, such that

(3.17) v = T\ ydp, 3(@) = 7 + 1| [o(a) — rldpe
(3.18) 1< T<1[l— @M+ 1y].

The arguments in the proof of this statement will also be used
in other proofs below. Of course, one can obtain analogously

(3.19) o = T| ydpe, g.(a) = —r + T\ [5(0) + rldy:

for different T and p.

Proof. For a given x e ", choose (T, tty, +++, My &1y **+, &) € S()
such that the error » defined by
(3.20) o7(x) = (1 — T)r + Tg (@) + 7
satisfies
(3.21) 0=7=1;

cf. (3.7, (3.8). It is clear from (3.8) that T'=1 if zel'. Since
|¢(x) | < M, (3.14) shows that ¢"(x) = — M for x e I". Hence, by (3.20),
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—M=1-—T)r+ TM+1 and, since T=1, we have 0 <1 - 1/T <
1 + 2M)/r. Consequencely, (3.18) holds.

For the choice (s, - -+, ttw, @, - ++, ,), write
(3.22) o= T3 e = T\ w3 o) = | plardpe,
2=1 r 1=1 r

where /¢ is a probability (Borel) measure on I" with support on the
finite set {z,, ---,2,}. Foreach k =1,2, --., choose T*, ptf, «-+, ptk ),
af, oo, kg, € S(w) so that y = %" in (3.19) satisfies 7*—0. If »>1+2M,
it can be supposed that T = lim T* exists and satisfies (3.18), and that
o= lim p* exists weakly. Writing 7= T* and s/t = ¢ and letting
k — <o, we obtain (3.17) from (3.20) and (3.22).

ProrosiTION 3.4. We have

(3.23) 6,(2) = 8.(%) = ¢°(®) = ¢"(w) for s = r,xe Q.
Furthermore
(3.24) &2(x) = lim ¢7(), d.(v) = lim g,(x)

exist for xe " and

(3.25) da(®) < o(x) < 9(x) for vxel .

Note that ¢7(x), ¢"(x) are defined on R", while ¢=(x), é.(x) are de-
fined only on 1.

Proof. Consider only ¢7, ¢*. The expression {---} in (3.7) can
be written

[} =@ = 1)+ T (o) .

The convexity of 2 implies that 77=1 in (3.8) if 2¢ Q. Thus the
term 7(1 — T') is a nonincreasing function of ». This gives the last
inequality in (3.23) which, together with (3.14), implies the existence
of ¢=(x) and the inequality ¢~(x) = ¢(x) for xe I

ProrosITION 3.5. The relation
(3.26) ¢7(x) = 4(2) [or Su(®) = ¢(v)]

holds for all xe " if and only if ¢(x) is a concave [or convex]| func-
tion on every flat piece of I"; in which case

(3.27) o"(x) — () |or g,.(x) — ¢(«)] uniformly on I,
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as r — co. In particular,

° = ¢ = ¢ 00 I' =g A1) .

The proof shows that both parts of (3.26) hold at an extreme
point x of I" for every ¢ C(I").

Proof. Consider only ¢" and ¢~. Suppose that the first part of
(3.26) holds for all xeI". Let 4 be a flat piece of I'. Then 4 is a
closed convex set and ¢"| 4 is a concave function. Thus ¢|4 is the
limit of a nonincreasing sequence of concave functions and hence is
concave,

Conversely, let g€ C°(I") and ¢ | 4 be a concave function on every
flat piece 4 of I'. Let o(r) = max|[¢"(x) — ¢(x)] for xe ", so that
o(r) = 0 is a nonincreasing function of » for large ». Let

0=)e = limo(r) as r— o .

It will be shown that ¢ = 0; i.e., that the first limit relation in (3.27)
holds uniformly on I". Choose a sequence of points x; e I" such that,
for large j, ¢/(x;) = ¢(2;) + c¢. In Proposition 3.3, let » =j,2 = =;
and, correspondingly T = R;, it = p;. Thus

v = T\ ydps, '(w) = 3L = T) + T sz
where T = T, satisfies (3.18) with » = j. Consequently
$@) + o = () < T swdn .

After a selection of a suitable subsequence (and a suitable renumber-
ing), it can be supposed that x, = lim z; exists and g = lim y; exists
weakly. In particular, x,e /" and g is a (Borel) probability measure
on I'. Letting 7 — o« gives

(3.28) 5 = | v, ¢(2) + o < | pwrap

since T;— 1.

If 2, is an extreme point of ", then the first part of (3.28) shows
that the support of y is the point x,, The second part then gives
(x,) + ¢ < ¢(x,). Thus ¢ = 0.

If 2, is not an extreme point of I", then x, is an interior point
of the smallest flat piece 4 of I' containing x,, The set 4 is a closed
convex subset of I" and, by the first part of (3.28), the support of p
is contained in 4. Thus the second part of (3.28) gives
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() + e = Lqﬂ(y)dﬂ < 4 ,

where the last inequality is a consequence of the first part of (3.28)
and the fact that ¢|4 is a concave function. Again, we obtain
¢ = 0. This completes the proof.

4. B(I'-approximations. As in the last section, let x = 0¢2
and ¢(x) e C°(I"). Let » > 0 be fixed (and sufficiently large) and, in
terms of the operations ¢ — ¢, ¢ — ¢, define two functions g, h € C°(R"),
which depend on ¢ and 7:

(4.1) g=(¢), and h = g" = [(8").]".

In (4.1) and below, if v € C°(R*), the functions 7,4, mean (v |I')",
(v | I),, respectively.

ProrosiTiON 4.1. The functions (4.1) satisfy
(4.2) gr=g9g=h=¢ onlrl,

(4.3) h=g¢g and g =h, on I".

Proof. By (3.14), ¢" = ¢ on I". By the analogue of (3.15), this
implies that ¢ = ("), = ¢, on I". The analogue of the first part of
(3.14) with ¢ replaced by ¢, gives g = (¢"), < ¢ on I'. Hence, by
(3.15) and (3.16), h = g" < (¢")" = ¢" on I". Thus (4.2) is proved.

In order to prove (4.3), note that h =g on I implies that
h,=g., ¢gon . Also, from h < ¢7, it follows that 2. < (¢"), =g
on I". Consequently h, =g on I In view of (4.1), this completes
the proof.

REMARK. If we could verify that 2 = ¢ on I', then we could
complete the proof of (I) at this point; cf. Proposition 4.6 and §5.
It will remain undecided whether “h = g on I always holds, but it
will be shown that this relation is valid if, for example, the extreme
points of I" are dense on I". This fact will be sufficient for the proof
of (I).

In the remainder of this section, we make the following assump-
tion:

(A) Let g, heCR") satisfy (4.3), hence

4.4) g<hon I,

For the sake of brevity, some statements and their proofs will
be given only for h. It will be clear that analogous statements hold
for g. These analogous statements will be utilized below.
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If ¢ is a Borel measure on I, supp ¢ will denote its support and
co (supp ) will denote the closed convex hull of supp p.

ProrosITION 4.2. Let 2, I". Then there exists a T=1 and a
Borel probability measure ¢ on I" such that

(4.5) 2 = T ydu, hw) = 7 + 7l (htw) — 7,

(4.6) g = h on supp £;
and h(x) is the restriction of a linear function of x on the set

4.7) {x =ty,t = 0,y eco(supp 1)} .

Proof. By Proposition 3.3 and h = g7, there exists a 7= 1 and
a Borel probability measure p satisfying

(4.8) 5 = 1| ydpe, h(w) = 7+ T{[ow) - rlde
Hence g < 2 on I" gives
(4.9) W) < 7+ T\ ) — rldp

and inequality holds unless (4.6) is valid. Using the fact that
h(ty) =r + t[h(y) — r] for t = 0,

we can write (4.9) as

(4.10) Wz T) — 7 < 2S‘Sr[h(ty) — rldtdy

while

(4.11) 2,/ T = 2“ tydtdy and 2” tdtdp = 1.
0J7T oJr

Since r» — h(x) is a convex function of x, (4.11) implies that
(4.12) Zglgr[h(ty) — ldtdp < (@) T) — 7 ;

the inequality holds unless k(x) is the restriction of a linear function
of x on the set (4.7).

The sign of equality must hold in (4.10) and (4.12), hence in
(4.9). Thus we conclude that (4.6) is valid and that A(z) is a linear
function on the set (4.7).

PRrROPOSITION 4.3. Let n = 2, so that I" is a curve. Then A(x) =
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g(x) on I'. Furthermore, if wx,,2*el’,l is the line segment [z, x*],
x=0¢l, and h(x) is a linear function of 2 on the sector S =
{e=ty,t =0,yel}, then Il TI.

Proof. Suppose, if possible, that there is a point x,€ " where
h > g. Then, in Proposition 4.2, supp ¢ +# {«,}. Thus, by Proposition
4.2 and its analogue for g, there is an arc on I', say, with endpoints
x,, x*, containing w, in its interior, g = h at x = x,, x*, and ¢, & are
linear functions of x on the sector S.

Clearly, by linearity, g = h on [, since g = h at © = x,, x*. As
g, h are linear on half-lines emanating from x = 0, it follows that
lcI'. For otherwise, there are points of the arc from =z, to z*
where g(x) > h(x). Since this impossible Il " and g = h at = z, €.

PrOPOSITION 4.4. Let n = 2 be arbitrary; x,,2,€’, and [ the
line segment [xz,x,]. Suppose that x = 0¢l,g = hatz =z, and 2 = 2,
and i(x) is a linear function of z on the plane sector S = {z = ty,
t=0,yel}. Then le[l.

Proof. Let m, be the 2-dimensional plane in x-space containing
the segment ! and the point # = 0. In the course of this proof, only
points x e, are considered.

Starting with the function v = k| (=1 N w,), apply the proce-
dure at the beginning of this section to obtain functions

9o = (¥"), and kg =g on I''=INT,.

The superscripts and subscripts (r) indicate the operations o+ — 2"
and + — 4., except that only points x;€m, are involved in the an-

alogues of (3.7), (3.13).

It is clear that +™ =h =h" on [, and so, h =g, =g on I,
but gy, = g = h at x = x,,,. The definition of the operation ¢ — ¢~
implies that Ay = ¢i;) = hon 8, h = g = h at = x,, ,. Consequent-
ly, h(, is the linear function % on the sector S. By the last proposi-
tion, Ay = g on Iy and lc Iy I'. This completes the proof.

COROLLARY. In Proposition 4.2,
(4.13) co(supppyc ™.

In other words, either supp ¢ = {,} or supp g is contained in a
flat piece of I,

ProposITION 4.5. Let 2, be an extreme point of I". Then hi(x,) =
9(x).
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Proof. If the assertion is false, then, in the last Corollary,
co (supp 2) is in a flat piece of I". Thus, in Proposition 4.2, T =1
and 2, € co (supp ), but ,¢supp #. This contradicts the assumption
that x, is an extreme point of I".

COROLLARY. Suppose that the extreme points of I' are dense on
I'. Then h(z) = g(x) on I'. In particular, h | = g|I" e B(I').

The last assertion follows from Proposition 3.1.

ProposITION 4.6. Assume that the extreme points of I” are dense
on I'. Then B(I") D A().

Proof. Let ¢e (") and ¢ > 0. By Propositions 3.4 and 3.5, we
have ¢ — ¢ < ¢, < ¢ <¢"< 9 +¢ on ' for large r. Also ¢, < g =
h<¢" on I, by Propositions 4.1 and 4.5. Since i |l € B(I'), the
proof is complete.

5. Proof of (I): B(I') = A(I"). In order to see that B(I") = A(I"),
let 4 be a maximal flat piece of I'. Then 4 is a convex set, say, of
dimension k£,0 <k <mn. Let %, be an interior point of 4 and let
¢ e B(I"). Let n*(x) be linear functions of « satisfying (1.0). Suppose
that ¢ is not a linear function, then (a* — a7)-(x — x,) = 0 defines a
hyperplane in R* supporting 2 at x = x,., This hyperplane contains
4 and, therefore, ¢(x) = a*-(x — x,) + ¢(x,) for xe 4. Thus e B(I") =
¢eA"). Hence B(I') < A(I') and, therefore, B(I") < A(I).

In order to prove the opposite inclusion, let ¢(x) € A("). In the
R+ gpace with coordinates (z, z"*') = (a!, ---, 2", 2"*"), let 2, be an
open, bounded convex set such that its boundary I, = 02, has the
properties that I, N {#"** = 0} = I" and every point (x,z"*) e ", with
2"+ == 0 is an extreme point of I',. Extend ¢(x) = ¢(x,0) to a con-
tinuous function é,(x, "*') on I, Then ¢,€ A(I",) since the only flat
pieces of I', are contained in I".

Since the set of extreme points of I', contains ', — I', they are
dense on I",. Hence, by Proposition 4.6, there exists, for every ¢ > 0,
a function h,e B(I",) satisfying |¢, — k| <& on [,. Thus h = h,|I"
satisfies he B(I') and |¢ — k| < € on I'. This completes the proof.
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