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CHARACTERISTIC POLYNOMIALS OF
SYMMETRIC MATRICES

EDWARD A. BENDER

Let F be a field and p an ^-polynomial. We say that
p is F-real if and only if every real closure of F contains
the splitting field of p over F. Our main purpose is to prove

THEOREM 1. Let F be an algebraic number field and p
a monic i^-polynomial with an odd degree factor over F. Then
p is F-real if and only if it is the characteristic polynomial
of a symmetric i^-matrix.

That p must be i^-real follows from work of Krakowski [4, Satz
3.3], To prove the coverse we generalize results of Sapiro [6] in
Lemma 1 and Theorem 3. Sapiro deals with the case in which p is
a cubic. Theorem 4 considers the minimum dimension of symmetric
matrices with a given root.

2* A basic lemma* In our proof we shall study congruence
classes of certain symmetric matrices which are defined below. We
shall denote congruence of the matrices A and B over the field F (i.e.,
A = TBT' for some nonsingular F-matrix T) by A ~ B{F).

DEFINITION. Let G be a field with subfield F. If λ e G is nonzero
and if au , an form a basis for G (as a vector space) over F, define
the matrices M = II^'ΊI a n ( * D(X) = diag(λ(1), « , λ w ) where super-
scripts denote conjugacy over F. We call

A - A(λ) = MD{X)M'

a matrix from G to F. Clearly

an = tτβlF (\odaj) .

If j%f — S φ Gi where the Gi are extension fields of F, and if At is
a matrix from Gi to F, then any matrix congruent to 2 0 A{ over F
is called a matrix from s$f to F. Note that a different choice for
the basis alf •••,<*» would lead to a matrix congruent to A(X) over i*7.

LEMMA 1. Let F be a field and p = gx qm a monic F-poly-
nomial decomposed into prime factors over F. Assume that the
splitting field of p over F is a separable extension of F. If the
identity is a matrix from

Σ θ F[x\l(qd)
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to F, then p is the characteristic polynomial of a symmetric F-matrix.

Proof. Let ΰ ^ S φ D^) and M = 2 φ Af< where the ith com-
ponent refers to F[x]/(qi(x)). We have TT' = MDM' for some F-
matrix T. Let E = 2 φ #(#;) where 0* is a zero of qim By separability
Λf is nonsingular. We have T~ιMD = (M-1?)'. Let

Then

= (T-1M)ED(T-1MY

= (T-1M)E(T-1MDY

Also | S - XI\ = \E — λ/| = ±p(λ). Finally, S is an jP-matrix since
Mf1 = H/3^ || where yβ is the complementary basis to α [2, p. 437].

3. The irreducible case* In this section we shall reduce the
proof of Theorem 1 to a study of the prime factors of p over F.
This requires the Hasse-Minkowski Theorem. The Hubert symbol over
a local field L will be written (α, b/L) = (α, 6) — ± 1 . If A is a
symmetric L matrix and A ~ Σ φ α ^ L ) , then

c(A/L) = c(A) = Ti(ai9 as)

is the Hasse invariant. If A is a nonsingular symmetric matrix over
an algebraic number field F, then we have dim A and det A = \A\
as global invariants, c(A/Fp) as Hasse invariants, and ind+ (A/Fp) as
real archimedean invariants where ind+ (A/F^) is the number of positive
a, in A - 2

THEOREM 2. Let F be an algebraic number field and q an F-real
irreducible F polynomial of degree n. Let K = F[x]/(q(x)) and let k
be a rational integer.

(1) If n is odd, the identity is a matrix from K to F.
(2) If n is even, there is a matrix A from K to F which has

the same archimedean invariants as the identity and satisfies
c(A)(\A\, —l)k~ + 1 at all local completions of F.

The next two sections develop the ideas needed in the proof of
this theorem. We now prove Theorem 1 from Lemma 1 and Theorem
2.
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Let p = ?i g8n rt be the prime factorization of p over F
where the degree d4 of Qi is odd and the degree et of r< is even. By-
assumption s Φ 0. Let i4< be the matrix from F\x\l(r{(x)) to F given
by Theorem 2 (2) with

k =

Let Bo be the dλ dimensional identity matrix—a matrix from
to F by Theorem 2(1)—and let

By induction, the Hasse-Minkowski Theorem gives B{ ~ I(F). Thus
the identity is a matrix from

F[x]l(qάx)) Θ Σ Θ FlxVir^x))
* = 1

to JP. By Theorem 2 (1), the identity is a matrix from F[x]/(qi(x)),
so an application of Lemma 1 proves Theorem 1.

4* The local case* In this section we reduce the proof of
theorems having the form of Theorem 2 to local considerations.

THEOREM 3. Let F be an algebraic number field and q an F-real
irreducible F-polynomial. Let alf , an be algebraic integers in
Q = F[x]/(q(x)) which are a basis for G over F. Let M = || aψ || and
let Ω be the set of prime spots on F which divide 2 | M |2. Suppose
that for each peΩ there is given a matrix A(Xp) from FJ[x]/(q(x))
to Fp. Then there is a matrix A — A(λ) from G to F and a local
prime spot cj £ Ω on F such that

(1) if peΩ, then

c(A/Fp) = c(A(\)/Fp) ,

and

\A(Xp)\/\A\eF*p,

the group of squares in Fp

(2) if p £ Ω is a local prime spot on F distinct from q, then
c(A/Fp) = +1 and | A \ is a unit of Fp;

( 3 ) A has the same real archimedean invariants as the identity
matrix of the same dimension.

Proof. If we change the basis used in forming A(Xp) and change
Xp by a square factor, then c(A(Xp)) and | A(XP) \ F* will be unchanged.
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Hence we may assume that au •••,«» is the basis for all p and that
λp is integral at p.

There is a sufficiently large positive rational integer m such that

λ0 = λp (mod pm) for p e Ω ,

implies

c(A(λQ)/Fp) = c(A(Xv)/Fv) for p e Ω ,

and

(A(λp) I/I A(λ0) I e F> for j^ef i .

Choose λ0 such that
( i ) λ0 is an integer of G
(ii) λ 0 Ξ λ p (mod pm) for £ e Ω
(iii) if JP is formally real, λ0 is totally positive. Let 3K = ΠΩpm.

For each local prime spot $ on G let k(§) be the largest rational in-
teger such that ψ{Ψ divides λ0. Let

U = Π

Then λo/U is prime to 3K. By the generalized arithmetic progression
theorem [1, Satz 13], there is an aeG and a prime spot D on G such
that

( i ) (αλo/U) = D ,
(ii) a^l(modSK),
(iii) if F is formally real, α: is totally positive.
Let λ = αλ0 and let q be the prime spot on F which £) divides.

Since λ = λ0 = λp(^)m), part (1) holds. Since λ is totally positive if F
is formally real, (3) holds. Since A(X) has integral entries and
|A(λ)| = N(£)U)\M\\ a unit of Fp for p$Ω\J{q}, part (2) holds by
[5, 92:1].

5. Local lemmas* In this section we prove a series of lemmas.
They will be used together with Theorem 3 to prove Theorem 2.
Throughout this section we shall let L be a local field with prime
spot p and characteristic zero; further, K=KuK2i" 1Km will be
finite algebraic extensions of L.

LEMMA 2. If p is prime to 2, there is a matrix A from ΣφKi
to L with integer entries and unit determinant.

Proof. It suffices to exhibit such a matrix from K to L. Let
au •••,#» be a free basis for the integers of K{ over the integers of
L. Let ΛΓ= Hα^H. The matrix M'~ι has the form | | $ y ) | | where



CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES 437

βif '",fin is the complementary basis [2, p. 437] to au — ,an. Let
77 be a prime of K. The ideal (βu -",βn) equals (77*) for some
rational integer k. Since (au , an) = (1), there is a matrix A,
whose elements are integers of L and whose determinant is an L unit,
satisfying MD(Πk) = AM'~\

For the remainder of this section we shall assume that p divides
2.

LEMMA 3. If [K: L] is odd, the identity is a matrix from K to
L.

Proof. Let T be the inertia subextension of L. Suppose that
the identity is a matrix from ϊ7 to L, namely MJ^Jdl, and that the
identity is a matrix from K to T, namely M2D2M2\ Then the identity
is a matrix from K to L, namely

(Mx ® Jlf2)( A ® A)(Λ*i ® W .

We first show that the identity is a matrix from Γ to L. Let Mi =
llâ 'MI where aly , af is a basis for T over L. Set A = M1Ml.
Since T is a cyclic extension of L, we have 4̂ ~ /(T). Since [ϊ7: L]
is odd, it follows that A — I(L).

We now show that the identity is a matrix from K to T. Let
77 be a prime of K such that 77e = π, a prime of Γ, where β — [ίΓ: T]
is odd. Let ^ = Πι~ι and Λf2 = || α| i } || and a = (e2 - l)/8. There are
two cases.

( i ) If ( - 1 , -1/T)α = +1, let λ = 1/β ,
(ii) If ( - 1 , -1/T)a = - 1 , let

λ - (1 + 77-1 + 477~2)/e.
Set A = | J B | B where B = M2D(X)M2'. In case (i) it is easily

verified that c(A) = + 1 .
We consider case (ii). Since ( — 1, — l)α = — 1, it follows that

e Ξ ± 3 (mod 8). Also, as

we have f(T(V 5)/T) = 2 (see [5, 63:3]). Thus (TΓ, 5) = - 1 and
(e, 5) = +1 for any unit ε of T. When β = 3 it is easily shown that
c(A) = + 1 . Assume e > 3. The matrix B has the form shown in
Figure I. We shall use the formula [3, p. 31]:

c(CJ = ( - l f | C m | ) Π l ( | C 4 | f - |C < + 1 | ) ,
t = l

if /7f=11 Ct I Φ 0, where Ct = || c s ί || (1 £ s, t ^ t).
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FIGURE I.

We must transform B. Let X be the e x e matrix such that pre-
multiplication by X adds π~λ times the (β — k + 2)nd row to the kth

row for k = 4, 6, 8, , 4[β/8] + 2 and leaves the remaining rows
unchanged. Let C = XBX'. By studying (XJ-'C^X;)'-1, we find
that

( i ) \C2i+1\e(-iyT2 for 2i + 1 < β,
( ί ί ) I Oe_11 G (— 1) ~ O-/ ,

(iii) I Ce I = 7Γe~2ε for some unit ε of T ,

(iv) / Z J l C ί l ^ O .

I t therefore follows t h a t

( i )
(ii)
(in)

Thus

C«|)(|Cai

^ I, - 1 Ce I) - ( -

= (-I)*"1 for 2 ί + l < β ,

_ i f | Ce

= + 1 since e = ± 3 (mod 8) .

LEMMA 4. // L2ZlN(K/L), the norm group of K over L, then
the identity is a matrix from K to L.

Proof. We make some preliminary observations. Let T{ be a
subfield of K (to be specified later) such that N(K/Ti)QTf. Let Tf
be the multiplicative group of Ti9 Let H be the maximum abelian
subextension of T{ in K of type (2, 2, , 2). By the reciprocity and
limitation theorems of class field theory [7, pp. 177, 180], the Galois
group of H over T{ is isomorphic to

Since N(K/Ti)£T}*, this is isomorphic to Tf/T}*. Hence [Tf: Tf2] -
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[H: Tt] which divides [K: Tt], By [5, 63: 9], 8 divides [Tf: Γf2]. Thus
( i ) [K: Tt] s 0 (mod 8).
Since N(HITt) £ 27, we have that f(H/Tt) > 1. Since [H: Tt] is

a power of 2 and K^H, we have
(ii) / ( ί T O = 0(mod2).
Suppose K = Ti(θ). Let af = θ*-1 and M = \\ a\S) ||. If λ e If we

have

I MD(X)M' I = NκJx Π

by the formula for a van der Monde determinant and N(K/Ti)ξΞ:Tϊ.
Hence

(iii) if C is a matrix from K to Tiy then | C\ e T?.
We now apply the above observations. Let T be the inertia

subextension of L. Construct the tower

where [Γ, : T,-^] = 2 for 1 ^ j ^ k and [Γ: ΓΛ] is odd. Since f(K/Tk)
is odd, we have N(K/Tk)§£Tl by (ii). Hence we may choose i such
that N(K/Ti) Q Tl and N(K/Ti+1) g Γ?+1. (Actually i = k - I, but
this is irrelevant.) Suppose the identity is a matrix from ϋΓ to 2V
Let B be a matrix from T< to L. Then A = I® B is a matrix from
K to L. By (i) we have dim 1=0 (mod4). Hence \A\eL2 and
c(A/L) = +1 by the formula.

where X, Y are symmetric matrices, x = dim X and 3/ = dim F. It
suffices to show that the identity is a matrix from K to Ύi%

Let C be a matrix from K to Γ i+1 with | C | g T?+1. (This can be
done since N(K/Ti+1)£Ti+1.) We have C - 1 0 - 1 0 s 0_ί_ where
s, t e Ti+1 by [5, 63:17]. Let e e Tt be such that Γ<+1 = T,(V e ). Let

1_ 1_
V e ~ V e

and E(q) = MD(q)Mr for g e Γ<+1. We have that

- ( 1 0 -1) <g> ί?(r) 0 S(rs) 0 £?(rt)

is a matrix from K to Tέ for nonzero r e Γ<+1. By (iii) we have
I S(r) I 6 T?. Since

dim ( 1 0 -1) - dim S(r)/2 - 2 = 2 (mod 4) by (i) ,

we have

Hence | E(rs) \ e \ E(rt) \ Γ*2. Thus
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c(S(r)) = c((/0 -1) (8) E(r))c(E(rs))c(E(rt))(\ E(rs) |, -1)

- ( - 1 , -l)c(E(rs))c(E(rt))(\E(rs)\, -1) by (*) .

Any q e Ti+ί has the form a + bV e with a, be T{. Write qι = α.
If g i ^ 0, then

c(E(q)) = (2qly -\E(q)\)(-l,\E(q)\) .

If (rs)^^)! Φ 0, we have

We may choose r = s^U + α/β)2ι/e with ϊ = 0,1, or 4 such that
(rs^rt), Φ 0. Since — | JE7(rs) | e Γ?, we have c(S(r)) = + 1 .

LEMMA 5. If ΣΓ [i£<: ̂ ] ^ s odd, the identity is a matrix from
ΣΓ Θ ^ to L.

Proof. By Lemmas 3 and 4 we are done unless [K^. L] = cί is
even and N(Ki/L)£L2 for some i. Suppose that this is the case.
Since N(Ki/L) §£ L2, there is a matrix J5 from if̂  to L such that
(-l)d / 2 | J3|£lΛ Let C be a matrix from 2 ^ 0 ^ - to L. Let

A= \B\-\C\ C®aB

where a e L is chosen so that

c(A) = c(\B\-\C\-C)(\B\, -l)c(B)(a, (-l)d'*\B\) = +1 .

LEMMA 6. // 2Γ[^: L] is even, N(KJL) g L2, αmϊ A: is α rational
integer, then there is a matrix A from ΣΓ 0 K{ to L such that
c(A)(\A\, -1Y= +1.

Proof. Let B be a matrix from If 0 1 ^ to L such that
( - l ) n | £ | £ L 2 where n = Σ?[KΪ. L]/2. Let A = α£ where α e L is
chosen so that c(A)(\A\, -l)k = c(B)(\B\, -l)*(α, (-1) Λ |5 | ) = + 1 .

6. Proof of Theorem 2. If n if odd, apply Lemmas 2 and 5.
Let B be the matrix given by Theorem 3. Define A = \B\ B. If n
is even, apply Lemmas 2, 3, 4 and 6. Let A be the matrix given by
Theorem 3. In both cases, behavior at the exceptional spot is handled
by the Hubert reciprocity formula [5, p. 190].

7* Matrices with given roots* We prove

THEOREM 4. Let F be an algebraic number field. Let Θ be the
root of an irreducible F-polynomial q of degree n. Then θ is the



CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES 441

characteristic root of some symmetric F-matrix if and only if q is

F-real. When such a matrix exists, it may be chosen to have dimen-

sion n or n + 1, whichever is odd. This dimension is the least

possible

(1) if n is odd or

( 2 ) if n = 2 (mod 4) and (-1) g N(F(Θ)/F) F\

Proof. Use Theorem 1 with p(x) = q(x) or xq(x). The result

is clearly best possible when n is odd. Suppose n = 2(4) and n is

least possible. Let ai~θi~1 and M — Ha^ll By the converse of

Lemma 1 when p does not have repeated roots (see [6, Lemma 1.1]

for a proof), there is an F-matrix T and a XeF(θ) such that

MD(\)M' = TT'. Noting that \MM'\ = -N(p'(θ)), we get

-leN(F(θ)/F)-F* .

By class field theory, for all n == 2(4) there exist F and θ such

that n + 1 is the least possible dimension.

I would like to thank Drs. 0. Taussky and E. C. Dade for their

assistance.
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