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CHARACTERISTIC POLYNOMIALS OF
SYMMETRIC MATRICES

EpwARD A. BENDER

Let F be a field and p an F-polynomial. We say that
p is F-real if and only if every real closure of F' contains
the splitting field of p over F. Our main purpose is to prove

Tueorem 1. Let F be an algebraic number field and p
a monic F-polynomial with an odd degree factor over F. Then
p is F-real if and only if it is the characteristic polynomial
of a symmetric F-matrix,

That p must be F-real follows from work of Krakowski [4, Satz
3.3]. To prove the coverse we generalize results of Sapiro [6] in
Lemma 1 and Theorem 3. Sapiro deals with the case in which p is
a cubic. Theorem 4 considers the minimum dimension of symmetric
matrices with a given root.

2. A basic lemma. In our proof we shall study congruence
classes of certain symmetric matrices which are defined below. We
shall denote congruence of the matrices A and B over the field F (i.e.,
A = TBT' for some nonsingular F-matrix T') by A ~ B(F).

DEFINITION. Let G be a field with subfield . If A € G is nonzero
and if «,, ---, a, form a basis for G (as a vector space) over F, define
the matrices M = ||a!{? || and D(\) = diag (\*, --+, M) where super-
sceripts denote conjugacy over F. We call

A= AQ\) = MDO\W)M!
a matrixz from G to F. Clearly
a;; = tre e W) o
If .or= = G, where the G; are extension fields of F, and if A, is
a matrix from G; to F, then any matrix congruent to = A; over F

is called a matrix from .o to F. Note that a different choice for
the basis «a,, -+, a, would lead to a matrix congruent to A(\) over F.

LEMMA 1. Let F be a field and p =q, --+ 9., @ monic F-poly-
nomial decomposed into prime factors over F. Assume that the
splitting field of p over F is a separable extension of F. If the
identity is a matrix from

3 @ Flal/(g:)
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to F, then p is the characteristic polynomial of a symmetric F-matrix.

Proof. Let D=3@ D(\;) and M = =@ M; where the " com-
ponent refers to F[z]/(gi(x)). We have TT’' = MDM' for some F-
matrix T. Let E = 3 D(6,;) where 0, is a zero of q;. By separability
M is nonsingular. We have T—MD = (M—T)'. Let

S=T*MEM-HT .
Then

S = (M-TYE(T-M)
= (T—*M)ED(T-MY
= (T—*M)E(T-*MDy
= (T-*M)E(M~'T)
=S.

Also |S — N | = | E — M| = #=p(\). Finally, S is an F-matrix since
M;' = || B || where B is the complementary basis to @ [2, p. 437].

3. The irreducible case. In this section we shall reduce the
proof of Theorem 1 to a study of the prime factors of p over F.
This requires the Hasse-Minkowski Theorem. The Hilbert symbol over
a local field L will be written (a,b/L) = (a,b) = +1. If A is a
symmetric L matrix and A ~ £ a,(L), then

c(A/L) = o(A) = 11 (a:, @)

is the Hasse invariant. If A is a nonsingular symmetric matrix over
an algebraic number field ¥, then we have dim A and detA = |A|
as global invariants, ¢(4/F}) as Hasse invariants, and ind* (4/F)) as
real archimedean invariants where ind* (4/F}) is the number of positive
a;in A~3PH ai(Fy).

THEOREM 2. Let F be an algebraic number field and q an F-real
irreducible F' polynomial of degree m. Let K = F[x]/(q(x)) and let k
be a rational integer.

(1) If n 1s odd, the identity is a matrix from K to F.

(2) If n is even, there is a matrix A from K to F which has
‘the same archimedean invariants as the identity and satisfies
c(A)(| A, —1)* = +1 at all local completions of F.

The next two sections develop the ideas needed in the proof of
this theorem. We now prove Theorem 1 from Lemma 1 and Theorem
2.
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Let p=gq,---q,r, -+- 7, be the prime factorization of p over F
where the degree d; of ¢, is odd and the degree e¢; of r; is even. By
assumption s == 0. Let A; be the matrix from F[«]/(ri(x)) to F given
by Theorem 2 (2) with

k= k(i) = (gej—lrdl— 1>/2.

Let B, be the d, dimensional identity matrix—a matrix from F[x]/(q.(x))
to F by Theorem 2(1)—and let

Bi: )Ai|Bi—1@Ai-

By induction, the Hasse-Minkowski Theorem gives B; ~ I(F'). Thus
the identity is a matrix from

Flal/(a.(=) @ 3 @ Flel/(r(=)

to F. By Theorem 2 (1), the identity is a matrix from F[z]/(q.(2)),
so an application of Lemma 1 proves Theorem 1.

4. The local case. In this section we reduce the proof of
theorems having the form of Theorem 2 to local considerations.

THEOREM 3. Let F be an algebraic number field and q an F-real
trreducible F-polynomial. Let a,, ---,a, be algebraic integers in
G = F[z]/(q(x)) which are a basis for G over F. Let M = ||al? || and
let Q be the set of prime spots on F which divide 2| M. Suppose
that for each pe 2 there is given a matriz A(\) from F[x]/(q(x))
to F,. Then there is @ matric A = A\) from G to F and a local
prime spot q& 2 on F such that

(1) if pef, then

C(A/Fp) = c(A(\)/ Fy)
and
[A(M) /1 Ale FY,

the group of squares in F\

(2) if peQ is a local prime spot on F distinct from q, then
o(A/F) = +1 and | A| is @ unit of F\;

(3) A has the same real archimedean invariants as the identity
matriz of the same dimension.

Proof. If we change the basis used in forming A(\,) and change
M by a square factor, then c(A(?»p)) and | A(\y) ]-F; will be unchanged.
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Hence we may assume that «,, ---, @, is the basis for all p and that
Ay is integral at p.
There is a sufficiently large positive rational integer m such that

Ao = Ap (Mmod p™) for pe 2,
implies

(AO)/Fy) = c(AQ\)/Fp)  for pe 2,
and

| AGw) /| Av) [€ FE - for pef.

Choose )\, such that

(1) A, is an integer of G

(ii) X = Ay (mod p™) for pe 2

(iii) if F' is formally real, A\, is totally positive. Let IR = I p™.
For each local prime spot P on G let k(B) be the largest rational in-
teger such that L*® divides »,. Let

nU= I PP .
qglpe!)
Then )\/Il is prime to M. By the generalized arithmetic progression
theorem [1, Satz 13], there is an @€ G and a prime spot O on G such
that

(i) (o) =9,

(ii) a =1 (mod IN),

(iii) if F is formally real, « is totally positive.

Let A = a)\, and let q be the prime spot on F' which O divides.
Since N = A\, = My(p™), part (1) holds. Since \ is totally positive if F'
is formally real, (3) holds. Since A(A) has integral entries and
[AQN) | = N(OW) [ M, a unit of F, for pg 2 {q}, part (2) holds by
[5, 92:1].

5. Local lemmas. In this section we prove a series of lemmas.
They will be used together with Theorem 3 to prove Theorem 2.
Throughout this section we shall let L be a local field with prime
spot p and characteristic zero; further, K = K, K,, ---, K,, will be
finite algebraic extensions of L.

LemmA 2. If b s prime to 2, there is a matriz A from ZPK;
to L with integer entries and unit determinant.

Proof. It suffices to exhibit such a matrix from K to L. Let
a, ---,a, be a free basis for the integers of K; over the integers of
L. Let M= ||a{|l. The matrix M'~* has the form ||5{"| where
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By, +++, B, is the complementary basis [2, p. 437] to «,, ---, @,. Let
IT be a prime of K. The ideal (8, ---, 8, equals (/I*) for some
rational integer k. Since («,, ---,a@,) = (1), there is a matrix A,
whose elements are integers of L and whose determinant is an L unit,
satisfying MD(I1*) = AM'.

For the remainder of this section we shall assume that p divides
2.

LEmMmA 3. If |K: L] is odd, the identity is a matriz from K to
L.

Proof. Let T be the inertia subextension of L. Suppose that
the identity is a matrix from 7T to L, namely M,D,M/, and that the
identity is a matrix from K to T, namely M,D,M,. Then the identity
is a matrix from K to L, namely

(M, Q Mx)(D; @ D)(M, & M) .

We first show that the identity is a matrix from T to L. Let M, =
[|ai? || where a, -+-, a, is a basis for T over L. Set A= M,M|.
Since T is a cyclic extension of L, we have A ~ I(T'). Since [T: L]
is odd, it follows that A ~ I(L).

We now show that the identity is a matrix from K to T. Let
Il be a prime of K such that /1° = 7, a prime of T, where ¢ = [K: T']
is odd. Let a; = II'™* and M, = ||a{” || and @ = (¢* — 1)/8. There are
two cases.

(i) If (-1, —-1/T) = +1, let » = 1/e,

(ii) If (-1, —=1/T)* = —1, let
A= 1+ 11+ 411¥)/e.

Set A =|B|-B where B = M,D(\)M;. In case (i) it is easily
verified that ¢(4) = +1.

We consider case (ii). Since (—1, —1)* = —1, it follows that
¢ = 3 (mod 8). Also, as

(1 —v=38\ _ (1 4+ 1V =38Y_
(==Y - (= -
we have f(T(V'5)/T)=2 (see [5, 63:3]). Thus (x,5) = —1 and
(¢,5) = +1 for any unit ¢ of 7. When ¢ = 3 it is easily shown that

¢(A) = +1. Assume e¢ > 3. The matrix B has the form shown in
Figure I. We shall use the formula [3, p. 31]:

o(Ca) = (<1, [Cu ) TL(Cil, = 1Ci)

if [I7,|C;| =0, where C; = [|c,.|| (1 <s,t < 9).
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1 1 4 0
1 4 n
s=||* : i
4r
// /
0 T T 4r O
FiGURE I.

We must transform B. Let X be the e x e matrix such that pre-
multiplication by X adds 7! times the (e — k + 2)" row to the k™
row for k =4,6,8,---,4[¢/8] + 2 and leaves the remaining rows
unchanged. Let C = XBX’. By studying (X,)'C«(X;)™, we find
that

(1) |Coup)e(=1)T* for 20 + 1 < e,

(i) [Cole (1) BT,

(iii) |C,| = n**¢ for some unit ¢ of T,

(iv) 1:|C;| # 0.
It therefore follows that

(1) (1Caussly =1Ces DI Coi |, —=[Coinn [) = (—=1)" for 20 + 1 < e,

(ii) (| Cosel, —=|Coi]) = (1) 05,

(iii) ((Coil, —1C,[) = (=) VE(—1, | C, )V
Thus

c(A)

I

C(B)(—1, |B[)er
c(ce)( _1’ l Ce l)(e%l)/z
= +1 since e = +3(mod38).

Il

LemMA 4. If L*2 N(K/L), the norm group of K over L, then
the identity is a matrixz from K to L.

Proof. We make some preliminary observations. Let T; be a
subfield of K (to be specified later) such that N(K/T,)< T?. Let T}
be the multiplicative group of 7,. Let H be the maximum abelian
subextension of T; in K of type (2,2, ---,2). By the reciprocity and
limitation theorems of class field theory [7, pp. 177, 180], the Galois
group of H over T, is isomorphic to

(TYIN(K|T:)/(T¥/N(K/T:)) .
Since N(K/T;)< T#*, this is isomorphic to TF/T;*. Hence [T}: T7] =
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[H: T;] which divides [K: T;]. By [5, 63: 9], 8 divides [T}: T#*]. Thus

(i) [K:T;] =0 (mod8).

Since N(H/T;)< T?, we have that f(H/T;) > 1. Since [H: T;] is
a power of 2 and K2 H, we have

(ii) f(K/T;) = 0 (mod 2).

Suppose K = T,(0). Let a; = ¢ and M = ||a{”]||. If e K we
have

| MDOM'| = Ner (VT (0% — 09)) e T2,
1551

by the formula for a van der Monde determinant and N(K/T,) < T2

Hence

(iii) if C is a matrix from K to T;, then |C|e T:

We now apply the above observations. Let T be the inertia
subextension of L. Construct the tower

L=T,cTc...cT,&T,

where [T;: T;_,] =2 for 1 <j <k and [T: T,] is odd. Since f(K/T,)
is odd, we have N(K/T,) <& T: by (ii). Hence we may choose 7 such
that N(K/T)= T: and N(K/T;. )& T?,. (Actually + =% — 1, but
this is irrelevant.) Suppose the identity is a matrix from K to T..
Let B be a matrix from 7; to L. Then A = I ® B is a matrix from
K to L. By (i) we have dimI = 0(mod 4). Hence |A|eL* and
¢(A/L) = +1 by the formula.

(") dX®Y) = e(X)e(Y) (=1, | X[)oH(—1, | Y B X, [ Y )=+

where X, Y are symmetric matrices, 2 =dim X and y =dimY., It
suffices to show that the identity is a matrix from K to T..

Let C be a matrix from K to T,,, with |C|¢ T%,. (This can be
done since N(K/T;.)&T:..) We have C~I@PH -1PsPt where
s,te T, by [5,63:17]. Letec T; be such that T,,, = T:(1"¢). Let

1 1 _ ' .
M= “]/e_ _ 1/2‘” and E(q) = MD(q)M' for qe T;.,. We have that

S(r)y =ID —1)Q E(r) @ E(rs) D E(rt)

is a matrix from K to T, for nonzero re T,,,. By (iii) we have
| S(r)| e T:. Since

dim (I —1) = dim S(r)/2 — 2 = 2 (mod 4) by (i),
we have
D - Er)|eTt.
Hence | E(rs)|c | E(rt)|-T: Thus
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e(S(r) = o((I D —1) Q E(r)e(E(rs))e(E(rt))(| E(rs) |, —1)
= (=1, =De(E(rs)e(E(rt))(| E(rs)|, —1) by (*) .

Any ge T;,, has the forma + b1 ¢ witha,be T;. Write ¢, = a.
If ¢, + 0, then

o(E() = (2¢,, —| E(Q) (=1, | E(9)]) .
If (rs)(rt), = 0, we have
o(S(r)) = (—(rs)(rt),, —[E(rs)]) .

We may choose » = s7'(l + 1 ¢)*V ¢ with 1 =0,1, or 4 such that
(rs)(rt), = 0. Since —|E(rs)|e T? we have ¢(S(r)) = +1.

LeEmMmA 5. If S »|[K.: L] is odd, the identity is a matriz from
SrP K, to L.

Proof. By Lemmas 3 and 4 we are done unless [K;: L] =d is
even and N(K;/L)Z L* for some 4. Suppose that this is the case.
Since N(K;/L) & L?, there is a matrix B from K; to L such that
(=1 B|¢ L*. Let C be a matrix from 3., P K, to L. Let

A=|B|-|C|-C&aB
where a ¢ L is chosen so that

¢(4) = ¢(|B|-|C|-C)(|B|, —De(B)(a, (-1)"*| B]) = +1.

LemmA 6. If ZP[K;: L] is even, N(K,/L) L L?, and k is a rational
integer, them there is a matriz A from XZ"@ K, to L such that
co(A)(A], -1)* = +1

Proof. Let B be a matrix from Er@P K; to L such that
(=1)"|B|¢ L* where n = X[K;: L]/2. Let A = aB where acL is
chosen so that c(A)(| 4|, —1)* = ¢(B)(|B|, —1)*a, (—1)"|B|) = +1.

6. Proof of Theorem 2. If n if odd, apply Lemmas 2 and 5.
Let B be the matrix given by Theorem 3. Define A =|B|-B. If n
is even, apply Lemmas 2, 3, 4 and 6. Let A be the matrix given by
Theorem 3. In both cases, behavior at the exceptional spot is handled
by the Hilbert reciprocity formula [5, p. 190].

7. Matrices with given roots. We prove

THEOREM 4. Let F be an algebraic number field. Let 0 be the
root of an irreducible F-polynomial q of degree n. Then 0 s the
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characteristic root of some symmetric F-matrix if and only if q 1s
F-real. When such o matriz exists, it may be chosen to have dimen-
ston n or m + 1, whichever is odd. This dimension 1is the least
possible

(1) if n is odd or

(2) if n=2(mod4) and (—1)¢ N(F(6)/F)-F".

Proof. Use Theorem 1 with p(x) = q(x) or xg(x). The result
is clearly best possible when 7 is odd. Suppose 7 = 2(4) and = is
least possible. Let a; = 6 and M = ||a{’||. By the converse of
Lemma 1 when p does not have repeated roots (see [6, Lemma 1.1]
for a proof), there is an F-matrix T and a M€ F(d) such that
MD(M\M’' = TT’'. Noting that | MM'| = — N(p'(9)), we get

—1le N(F(0)/F)-F*.

By class field theory, for all n = 2(4) there exist F' and 6 such
that » + 1 is the least possible dimension.

I would like to thank Drs. O. Taussky and E. C. Dade for their
assistance,
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