PACIFIC JOURNAL OF MATHEMATICS
Vol. 26, No. 1, 1968

STRONG CONTINUITY OF OPERATOR FUNCTIONS

RiCHARD V. KADISON

The complex-valued functions defined on a subset S of the
plane such that (S-— S)~ NS is empty which give strong-
operator continuous mappings from the set of normal operators
on a Hilbert space with spectra in S into the set of all normal
operators are characterized as those which are continuous on
S, bounded on bounded subsets of S and O(z) (Theorem 4.2),
In the process of proving this result, it is shown that the
adjoint operation is strong-operator continuous on the set
of normal operators (Theorem 4.1),

In proving his fundamental Density Theorem [1], Kaplansky needs
and establishes the fact that continuous real-valued functions vanishing
at o define strong-operator continuous mappings of the set of bounded
self-adjoint operators into itself. He extends this result to bounded
continuous functions as well.

While the Kaplansky Density Theorem has become an indispensable
tool in the study of operator algebras, the various strong-operator
continuity results are themselves important and useful. The purpose
of this note is to give a precise delineation of the class of functions
which define strong-operator continuous mappings. The technical de-
sirability of having these results for normal operators forces us to
consider functions of mn-tuples of commuting self-adjoint operators
(couples would suffice, but #n-tuples add no difficulties). The results
for m-tuples appear in §3; their application to functions of normal
operators, in §4.

The reduction from functions of normal operators to functions of
pairs of commuting self-adjoint operators involves the (topological)
behavior of the adjoint operation on the normal operators. Now, it
is well-known that the the adjoint operation is not strong-operator
continuous on the set of all bounded operators. The most familiar
example illustrating this discontinuity is the “one-way shift” operator
V. With{z,},-,, --- an orthonormal basis, V is defined by Vz, = %,.,,
so that V maps the Hilbert space isometrically into itself. The same
is true for V™, for each positive integer m. Thus || V™z|| =1 for
each unit vector z and all positive m; so that (V™) does not tend
strongly to 0. However, if E, is the orthogonal projection with
range spanned by 2,.,, Zprs -+, £, V*= V", Thus (V")*E, = (V")*; and
(V™* tends to 0 strongly (since ||(V™)*|| =1 and E, tends strongly
to 0). Despite this lack of continuity of the adjoint operation on the
set of all bounded operators, it is strong-operator continuous on the
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normal operators. This fact (which seems to be new) is proved in
Theorem 4.1.

2. Notation and preliminaries. We deal with complex Hilbert
space 5#. The algebra of all bounded operators on Sz is denoted
by & (5#). We use the notation R for real Euclidean n-space, and
C for the set of complex numbers. The strong-operator topology on
# (7)) is the point-open topology on <Z(5#) induced by the metric
topology on 7 (so that (A4,) converges to A in the strong-operator
topology when (A4,x) converges to Ax for each « in £#°). The strong-
operator topology on the Cartesian product Z(5#) X -+ X Z(ZF)
is the product strong-operator topology (with similar terminology for
each subset of (") X +++ X B (5F)).

. DEFINITION 2.1. If 4, ---, A, is a commuting set of bounded
self-adjoint operators on 57, the subset {(0(4,), :--, 0(4,))} of R",
where o ranges through the nonzero multiplicative linear functionals
on the C*-algebra A generated by A,---,A, and I is called the
spectrum of (4,, ---, 4,) (= A) and denoted by o(A4). If S is a subset
of R", the set of such A with ¢(4)< S is denoted by <& (5#)s. Since
2 is commutative, it is isomorphic to the algebra of continuous complex-
valued functions on some compact Hausdorff space X. If A— A4 is
the isomorphism and f is a real-valued continuous function defined on
S, we denote by f(4,, ---, A,) the (self-adjoint) operator in 2 corres-
ponding to x —»f(fil(x), e, A(2)).

In accordance with this definition, <#(57)r will denote the set
of all bounded self-adjoint operators on 57°. We use the notation
G (SF)s to denote the set of bounded normal operators on 57 with
spectra in S, when S is a subset of C. Accordingly, &# (7). will
denote the set of all bounded normal operators on £#. With f a
continuous real-valued function defined on a subset S of R*, we use
the symbol f, again, to denote the mapping of Z(57)s into & (5 )
described in Definition 2.1. By means of Spectral Theory, we can
ascribe a meaning to f(4,, ---, 4,) for certain noncontinuous funections
fon S.

For a point « = (x,, ---,2,) in R", we denote by |x| the sum
2| + -+« + |2, | and by || 2 || the number (3 2%)'?., We use the notation
“f is O(x)”, for a function f defined on a subset S of R", to mean
x — f(x)/|| x|| is bounded on S outside some bounded subset of S.

3. Operator functions of several variables. We determine con-
ditions, in this section, for real-valued functions defined on certain
subsets S of R" to be strong-operator continuous on <Z(57°)s. Basic
to this discussion is the:
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REMARK 3.1. The mapping (4,, ---,4,)—A4,--- A, is strong-
operator continuous on bounded subsets of <Z(57°) x --+ X Z (7).

LEMMA 3.2. If f is a continuous mapping of R into R which
tends to a limit at o them f 1is stromg-operator continuous on
DB(SF ) g,

Proof. Let X be the one-point compactification of R"; and let
% be the algebra of finite linear combinations of products f, --- £,
where f; is a continuous real-valued function on R of bound not ex-
ceeding 1 and tending to a limit at «. The constant function 1 is
in .o7. If a and b are distinct points of X and both lie in R", suppose
o and b have distinct j th coordinates a;, b,. We can construct f;
on R such that || f;|| =1, fi(a;) =1 and f; vanishes outside an open
interval about @; not containing b;. Choosing f, to be 1 for k = j,
fi+++f,1s in &7 has the valuelataand 0 at b. If a is in R", say
e =(a,---,a,), construct f; on R with fi(a;) =1=][f;|| and f;
vanishing at <. Then f,---f,is 1 at @ and 0 at c. Thus .o~
contains the constants and separates points of X. From the Stone-
Weierstrass Theorem, .o~ is uniformly dense in C(X).

If we have established the strong-operator continuity of each
function in .o on <Z(SF)R", then that of f will follow. In fact,
given A,, ---, A, commuting self-adjoint operators and z in 7,
select vectors y{', k=1,--+,m; j=1,---,5n in 5~ such that if
I[4;, — Bly¢?|l<1,k=1,+-+,m; 5 =1, ---,n, with B,, -+, B, com-
muting self-adjoint operators, then

” [g(Aly ] An) —g(Bly M) Bn)]wH < 1/3 ’

where ¢ is a function in .97 such that ||f — ¢|| < 1/3|[x]||. For this
(Bu Tty Bn)y

LA, -y A) — f(By, -+, Bl
S A -5 A) — 9(Ay, -+, A |
+ 1Ho(Ay, - -+, Ad) — 9(By, - -+, Bo)]z ||
+ 1l [9(By, =+, By) — f(By, »++, Bz || < 1.

The continuity of ¢ in .o~ will follow from that of the products
fi -+« f, used in the definition of .o~. Since each f; is strong-operator
continuous on Z(5#)g [1; Lemma 5] and (4,, ---,4,) — A4, --- 4, is
strong-operator continuous on Z(57°), X - -+ X Z(5F),, where <7 (57),
is the unit ball in <% (5#”), the composite mapping

(Byy =+, B.) = (fu(BY), =+, [u(B,) = fu(By) « -+ fu(B.)
= (fl "'fn)(Bly "'1Bn)
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(recall that || f;|| <1 so that || f;(B;)|| < 1, and compare Remark 3.1)
is continuous.

With f a real-valued function defined on a subset S of R", a jump
point for f is a point in S- for which (lim f)(») — (lim f)(p) >0. If f
is continuous, the jump points for f lie in S— — S. We shall need
the following lemma whose proof is a slight variation of the proof
of [1; Th. 2] to suit the present circumstances.

LemmA 3.3. If h is a bounded, real-valued function on the subset
S of R™ and the set J of jump points for h is such that J— N S 1is
null, them h is stromng-operator continuous on <% (SF)s.

Proof. Suppose (4,, -+, A,)(= A) is in =#(5#)s. Then o(4) is
a compact subset of R disjoint from J— (by assumption). Let O be
a bounded open set containing ¢(A4) with closure O~ disjoint from J-.
Since no jump point for % lies in O~ N S-, assigning (Iim %)(p) to each
p of this set defines a continuous extension of % to it. Finally, let
h, be the function on R™ which is some continuous extension A, to
O~ of this function (Tietze Extension Theorem), & on S and 0 else-
where. We note that, with & continuous on R”, 1 on ¢(4) and 0
outside O, h/.(= p) and 1 — k + h/(= q) are continuous on R". On
the complement of O~, & and hence p are 0; so that p is continuous
at points of this complement (an open set). On O— — O, k is 0; so
that p is 0 and continuous at points of O~ — O, since p = h,k on O~
with h, continuous, hence bounded, on O-. On O, an open set, p is
the product of the two continuous functions A, and k. Since p and
q — 1 vanish outside O and are continuous on R", they are strong-
operator continuous on .<# (27 )R" (from Lemma 3.2).

As p = q¢ = h on o(4), p(A) = q(A) = K(A). Combining this with
the identity h, = (1 — ko)» + h,g which becomes » = (1 — h)p + hq on
S; we have, for each B in <#(57)s,

MB) — MA) = [1 — K(B)][p(B) — p(A)] + M(B)[a(B) — q(A)] .

The strong-operator continuity of %~ on <# (57 )s follows from that of
p and ¢, this last identity and the fact that % is bounded on S.

THEOREM 3.4. If f is a real-valued function defined and O(x)
on a subsst S of R", bounded on bounded subsets of S and such that
J~ NS is null, where J is the set of jump points of f, then f 1is
strong-operator continuous on 7 (57 )s.

Proof. We note, first, that if g is bounded, with jump points
in J, and real-valued on S, and % is strong-operator continuous on
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F(S#)s, then gh is strong-operator continuous on <#(57)s. This
follows from the strong-operator continuity of %, of g (from Lemma
3.3), and the inequality:

| [o(A(A) — g(B)W(B)]x ||
< lg@ | - I [(A) — MB)Je || + [[[9(4) — 9(B(B) I,

where A = (4, --+,A,) and B = (B, ---, B,) are in 7 (5F)s.
Let g(z) be f(»)/(1 + |2[) for = in S,

T = (@, 0, ®,), || =2 |+ o0+, (= @]
=X lx; ).

From the hypothesis, g is bounded on S; and its set of jump points
is contained in J. Once we note that x — | x| is strong-operator con-
tinuous on .<#(5%¢”)s, the strong-operator continuity of g on < (5F),
(Lemma 3.3) and the argument of the first paragraph gives the strong-
operator continuity on % (2#¢")s of h defined by h(x) = (1 + | z|)g(x),
for « in S. Since |(4, -+, A,)| =4, + --- +|A,|, the strong-
operator continuity of x—|x| on (57 )R" will follow from that of
A—|A|on Z(#)g. Let r(x) bex for |ov| <1and|z|/z for 1 < |z|;
s(x) be xr(x); and t(x) be |x| — s(x). Since r is bounded, ¢ vanishes
outside [—1,1] and both are continuous on R, [1; Th. 2, Lemma 5]
shows that both are strong-operator continuous on <#(57)g. Sois s,
from the argument of the first paragraph. Thus, 2 —|z| = s(x) + t(x)
is strong-operator continuous on <& (¢ )g.

Our thanks are due to R.J. Blattner for suggesting ‘1 + || in
place of ‘|x|” to define g thereby correcting and simplifying the
argument.

LEMMA 3.5. With S a subset of R™, i1f the real-valued function
f 1s strong-operator continuous on Z (57 )s it is continuous on S,
bounded on bounded subsets of S, and O(x).

Proof. Assuming f is defined on < (27)s (by Spectral Theory)
and restricting f to {(ef, ---,a,l):(a, +-+,a,) in S}, we see that f
must be continuous on S if it is to be strong-operator continuous on
F(57)s. With zx, in S, the translated set, S — «,, contains 0; and
g defined on S — z, by g(x) = f(x + =) — f(x,) is bounded on bounded
subsets of S — %, and O(x) if and only if f is bounded on bounded
subsets of S and O(x). We may assume that 0 lies in S and f(0) is 0.

Suppose that f is not O(x). Then there is a sequence (x,) in S
with ||#, || — o« such that m|/z,|| <|f(z.)|. Taking <,(0,1) for
57 (relative to Lebesgue measure), we show that f is not strong-
operator continuous at (0, ---, 0) on n-tuples of multiples (by coordi-
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nates of the x,’s) of a projection in the multiplication algebra of
,(0,1). More specifically, given ", «cc @ 5 =1 ..., m, in
%0, 1), we find a subset X of (0, 1) having positive measure and r»
such that, with g; = ¢; on X and 0 on the complement of X, where

£, = (aly "'yan)y |gj'1/r(lij) 12 = 1 for -7 = 1) e, Ny D= 1) s, My while
Sl feoglf=1, where g(s) = (g.(s), -+, g.(s)) for s in (0,1). With

M,, the multiplication operator (on _&,(0,1)) corresponding to g¢,,
M,,, -+, M, )e.cz#(>¢)s and f(M,, -+, M, )= M;,,. Thus

” f(Mgly ] Mgn)(l) || =1

despite the fact that || M, v{"|[| <1 for p=1,--+,m; j=1,.--,m.
Hence f is not strong-operator continuous on .Z (57 )s.

It remains to locate X and » as described. With v = 33, , [ v |,
let X, be the subset of (0,1) at which |+ | does not exceed %, for
kE=1,2,.... Since 4 is in 7,0, 1), X, has positive measure a for
some k. Choose r larger than % so that ||z,|/?ak® = 1; and let b be
(|, ||*ak®)~. Then 0 < b <1, and there is a subset X of X, with
measure ab. Defining g, to be a; at points of X and 0 at points of
the complement of X, where z, = (a,, ---, a,), we have

Vo= | Joswr < ®fioF = la;Pab < ke |12, lPab = 1,
while

[ 7eogrzl 170k = F@yabzrlo,fab =i 21,

Since

S g = flowrst,
we have S|gf¢r;f’ pP<1, forp=1,+--,mand j=1, -, n.

Suppose, next, that f is not bounded on some bounded subset of
S. Then there is a sequence (x,), with z, in S, tending to some
point x, in R* such that m < | f(x,)|. As before, translating by —z,,
we may assume that xz, = 0. Select (b, ---,b,) in S with |b,| <1,
J=1, -, n

We shall show that f is not strong-operator continuous at (6,7, « - -, b, 1)
on FH (7). Given ¥, j=1,.--,m; k=1,---,m in 7,0, 1); let
v =3, ¥ |. There is a subset X of (0, 1) with positive Lebesgue
measure q such thatS [¥|* < 1/4. Choosersothat|ae;|<1,5=1,---,n,

X

where 2z, = (ay, ---, @,); and so that a| f(z,) — f(b, +++,b,)|* = 1. Let
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g; be a; on X and b; on the complement of X in (0, 1).
As before: f(Maly Tty My“) = Mfogy where g(s) = (gl(s)y tt gn(s))
for s in (0,1). Thus |[[f(M,,, ---, M, ) — f(b.I, -+, b,I]1|| = 1, since

[ 00— 7@y, bE
= r@) = 7@y B =alf@) = £ b E 2L
But
1@ = 092 P < 18 = 0 (S L1
=16 =g ={ 10— awr=a] wr=1,

so that |[(b,]— M, )y =1, for j=1,---,m and k=1,---,m.

As (M,, -+, M, )e Z (), f is not strong-operator continuous at

&1, ---,b,I) on <Z(2)s, completing the proof of this lemma.
Combining Theorem 3.4 with the foregoing lemma, we have:

THEOREM 3.6. If S is a subset of R™ such that (S—— S)~ NS s
empty then a real-valued function f defined on S is stromg-operator
continuous on Z(57)s if and only if it is continuous on S, bounded
on bounded subsets of S, and O(x).

Proof. In view of Theorem 3.4 and Lemma 3.5, we need note
only that the set of jump points of a function continuous on S is a
subset of S~ — S.

For a closed set S, S— — S is empty; and, for an open set S, S— — S
is closed. In both cases (S~ — S)~ N S is empty; from which we have:

COROLLARY 3.7. If S is a closzd or open subset of R", a real-
valued function defined on S is strong-operator continuous on 7 (57 )
iof and only if 1t is continuwous on S, bounded on bounded subsets of
S, and O(z).

Of course, the continuity assumption makes the hypothesis of
boundedness on bounded subsets superfluous when S is a closed set.

4. Functions of normal operators. The key to applying the
results of §3 to the normal operators .7 (5% )¢ is:

THEOREM 4.1. The adjoint operation is strong-operator continu-
ous on F(5F)c.
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Proof. The assertion follows from:

| (B* — A" |* = [| Bz |[* — || Az |]* + (z, (A — B)A*x)
+ (A — B)A*», ) =< [| (A — B || (|| Az [[ + [| Bx|])
+2[|A - B)A%x| ||z .

(Our original proof of Theorem 4.1 was somewhat longer. A.
Hoppenwasser found a simpler proof which led us to the argument
above.)

THEOREM 4.2. With f a complex-valued function defined on a
subset S of C for which (S~ — S)~N S is empty (in particular, for
S open or closed), f is strong-operator continuous on % (5F)s 1f and
only if f is continuous, bounded on bounded subsets of S, and O(z).

Proof. Adopting the usual identification of C with R? we may
view S as a subset of R®:. With z = a + b, a and b real, let f(z) =
g(a, b) + ih(a, d), g(a,d) and h(a,bd) real. Then ¢ and % are defined
on S. Moreover, g and % are continuous on S, bounded on bounded
subsets of S, and O(z), if and only if the same are true for f. This
is the case if and only if ¢ and % are strong-operator continuous on
B (5#)s, from Theorem 3.6.

We conclude the proof by showing that

A+ 1A, — 9(Ay, A) + h(A,, 4) = (A + 14)

is strong-operator continuous if and only if ¢ and % are. Since

A+ iAz—»(_;_[Al YA, + (A + iA)*],
1 - o)
Sl + A, — (A + 14)7]) = (4, A)
21

is a strong-operator homeomorphism of #(57), with <7 (2#°)R?, from
Theorem 4.1, it will suffice to show that (4,, 4,) — g(4,, A,) + th(4,, A,)
is strong-operator continuous if and only if ¢ and & are. All that requires
proof is the strong-operator continuity of g and % on <#(5#)s from
that of (4,, 4,) — g(4,, 4,) + 1h(A,, A,) on Z(5#)s. From Theorem 4.1,
(A, A) "’[g(An A;) + ’ih(Au A,) + (g(Au A,) + ih(A,, Az))*]/z =g(4,, 4)
is strong-operator continuous on <#(5#");, and similarly for (4,, 4,) —
h(4,, A,).

We have made no distinction between <#(57)s; with S a subset
of C, referring to the normal operators on 57 with spectra in S, and
F (577 )s with S a subset of R? referring to pairs of commuting self-
adjoint operator with joint spectrum in S. The context makes clear
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the sense in which this notation applies; and the argument indicates
that there is no essential distinction between the sets designated. Of
course, a theorem analogous to Theorem 8.4 holds for functions of

normal operators.
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