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THE SECOND COUSIN PROBLEM
WITH BOUNDED DATA

E. L. STOUT

Given a complex manifold M9 an open covering Ψ' =
{VαjαeA, and, for each α e A a function fa holomorphic on Va

such that for all a, a' e A, /„/«/ is a zero-free holomorphic
function on Va n Va', the associated second Cousin problem is
the problem of showing the existence of a function F holo-
morphic on M such that for all α, Ffά1 is a zero free func-
tion holomorphic on Va. In the present paper we consider an
analogous problem in the case that M is the open unit poly-
cylinder U*={(zu , zN) e C^: \z, \ < 1, , | zN \ < 1}, that the
functions fa are required to be bounded and that the sought
function F is also required to be bounded.

If Ω is an open set in C^, we denote by H°° [Ω] the algebra of
functions bounded and holomorphic in Ω. In the first section of the
present paper we will establish the following result.

THEOREM I.I. Let 5̂ " = {Fα}αe^ be an open covering of UN

9 the
closure of UN, and for each a, let faeH°°[Vaf] UN]. If for all
a, βeA^fafj1 is an invertible element of H°°[Vaf] Vβ D UN], then
there exists FeH°°[UN] such that for all a, Ff"1 is an invertible
element of H~ [Va Π UN].

An analogous theorem is valid in the case that we consider func-
tions with continuous boundary values; it is essentially contained in
the thesis of Douady. In § II we consider this result briefly and give
an application of it to an interpolation theorem.

I* Proof of theorem I.I. A remark concerning the statement
may be in order. Although the functions fa are only defined on
subsets of UN and although we seek a function F defined only in UN,
it seems necessary to require that 5^ be an open covering of UN

even if we require 5^ to be finite. A relevant example, with J?" an
open cover of U = U1 which consists of two sets is as follows. Let
λ be an arc with and points 1 and —1 which is contained, except
for its end points, in the lower half of the open unit disc. If λ
approaches the real axis with sufficient rapidity, the sequence {1 — l/n}ζ=1

will be the zero set of a function f holomorphic and bounded on the
set Fj. = {z e U: z lies above λ}. We can choose f to be continuous
on Vx U (interior λ) and of modulus 1 on λ. We take for V2 the part
of U lying on and below λ together with the set {z e V,: | f(z) | > 1/2}.

379
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Define f2 on V2 to be identically 1. Then {Vlf V2} is an open cover
for U. On VΊ Π V2, Afϊ1 is bounded and bounded away from 0, But
since the sequence {1 — 1/n} does not satisfy the Blaschke condition,
it is not the zero set of any feH°°[U].

The proof of the theorem depends on the following lemma.

LEMMA 1.2. Let f — u + iv be a function holomorphic in UN.
Let λx and λ2 be disjoint arcs in the unit circle, and define Vά, j = 1, 2,
to be the union of U, the interior of Xjy and the exterior, including
oo 9 of the unit disc. If u is bounded we may write, for z e UN,

f(z) = fi(z) +ft(z) where fά is holomorphic and has bounded real part
in V, x UN~\

We shall defer the proof of the lemma for the moment and
proceed to show how the lemma implies the theorem. It is more con-
venient to work in the polycube than in the polycylinder. We set

Δ+ = {zeCN: zό = xj + iyj9 - — <xι < 1, | x21, , I xN \,

\Vy i, •", \VN\ < 1 } ,

a n d

4~ = { z e C N : - 1 < ^ < i - , | α ; 2 | , ••., | ^ | , \yι\f . . . , \ y N \ < 1} .
Δ

Assume given F an invertible element of H°° [Δ+ n Δ~\. We assert
that on Δ+ Π Δ~,

(1.1.1) F = F+F~

where F+ and F~ are invertible elements of H°° [Δ+] and JEf°°[zl~]
respectively.

We may write F = eΘ where G is holomorphic in Δ+ Π Δ~ and
where Re G is bounded; in general Im G will not be bounded. The
lemma implies that G — G+ + GL where G+ and G_ are holomorphic
in Δ+ and Δ~~ respectively and have bounded real parts: This can be
proved in the following way.

Let a be a conformal map of U onto {z — x + iy : | x \, | y | < 1}
and β one from U onto {z = x + iy : \ x \ < 1/2, | y \ < 1}. Then the
map Φ : UN —> Δ+ Π Δ~ given by Φ(z) = (β(zύ, oc(z2), , a(zN)) is an
analytic homeomorphism. Let
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and let Xu λ2 be respectively the preimages of Ax and A2 under β.
Let Vι and V2 be the domains in the Riemann sphere constructed
from λj. and λ2 respectively as in the statement of the lemma. Given
a point w, \ w \ > 1, we define β^w) to be 1 — [β(l/w)]~. (Here [ ]~
is used to indicate complex conjugation.) This definition effects a
continuation of β to a conformal one-to-one mapping of VΊ into C in
such a way that the range of the continued map, βly contains

iy:\y\<l, - ^- < x < l\ .

In the same way β continues to a conformal map β2 of V2 into C
such that /52[V

r

2] contains

= x + iy : | y \ < 1, - 1 < x < -ί

Define Φ3: V3 x UN~ι —> C^ to be the natural continuation of Φ from
UN into the set Vά x UN~ι. The range of Φ1 contains z/+, that of

Apply the lemma to the function G ° Φ to get G ° Φ = Gx + G2

where Gy is holomorphic and has bounded real part in V, x Z/^"1.
But then Gjoφj1 is holomorphic and has bounded real part in Δ+ if
i = 1, in Δ~ if i = 2, and we have, since Φτι = ί̂ ^1 = 0-1 on J + Π ^~,
that in A+ n 4", G = G^Φγ1 + G2oφ~\ This is a decomposition of G
of the desired kind.

For the function F+1 we take exp(Gx ° Φ^1), and for F_ we take
exp(G2 ° Φ71). This choice of F+ and JF7^ gives the decomposition of F
which we seek.

As soon as we have the decomposition (1.1.1.) for invertible
elements of H°°[J+ Π d~], the theorem can be established by a patching
argument familiar in this context. (See, e.g. [1].) For the rest of
the argument, let us set Δ\ = Δ+, Δ\ = Δ~. Suppose given 5^ = {Va},
an open covering of the closure of the polycube Δ — Δ\ U Δ\, and for
each α, fa e H~[Va Π 4] such thatΛ/7 1 is invertible in H-\Δ n 7 f f n F^].
Suppose the theorem is false so that for no F G H°° [Δ] is it the case
that for all a, Ff"1 is invertible in H°°[Va Π Δ]. Then it cannot be
that the induced problems on Δ\ and Δ\ are both solvable. That is
to say, it cannot be the case that there exist Fx and F2 in H™ [Δ{]
and H°° [Δf\ respectively such that F5f~

ι is, for all a, an invertible
element of H°° [Va Π Δ{\.

Suppose that such Fι and F2 exist. The function F^ς1 is then
an invertible element of H°° [Δ\ Π Δf\. Since 5^ is an open cover for
the closed polycube J, finitely many of the elements of 5^, say
Fi, > Fp cover Δ\ n JJ. Thus, there are ε and ikf > 0 such that for
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j = 1, 2, , p, IFJΫ I and | F2fj
ι | are at least ε but no more than

M on Δ\ Π F, and JJ n V3 respectively. Thus, if z e Δ\ Π Δ\ so that
zeVj, say, then

and this is no more than M/e and no less than ε/M. Consequently,
the decomposition (1.1.1.) applies to FxF2

ι and provides Gx and G2,
invertible elements of H°° [J{] and H°° [Δl] respectively, such that on
Δ\ Π Δ\ we have

whence

Ffi^1 = F2G2 .

Thus, we can define F e H°° [Δ] by setting

cγz\ _ iFι(z)Gτ\z) z e Δ\
( >-\F2(z)G2(z) zeJl.

Consider now Ff~ι on Va. On Va Π Δ\, this is (FF^iF^f^1) and so is
an invertible element of H°°[VaPι Δl] and on Va Π ̂ ί it is (FF2

ι){FJ~ι)
and so is invertible in H°° [Va n ^Π Thus, for all a, Ff~ι is invertible
in H°°[Va f) Δ]. By hypothesis no such F exists, so we must conclude
that either Fx or F2 does not exist.

Suppose Fj. does not exist. Set

e 4 : - — < 2/i <

Arguing as in the last paragraph, there do not exist functions JF£1}

and F{

2

2) in H°° [Δι

2] and H°° [Δl] respectively such that for all α, F^f*1

is invertible in H°° [Δ(]y j = 1, 2. Thus, the induced problem is not
solvable on both Δ\ and Δ\.

Iterating this procedure, proceeding cyclicly through the real
coordinates of C^ we obtain a nested sequence Δ\ Z) Δ2

2 z> Δ%* ZD of
cubes with diameter decreasing to zero on none of which we are able
to solve the induced problem. This leads to a contradiction, though,
for 5^ is an open cover for the closure of Δ so for some N and some
α, Δ»* c Va if n ^ N, and the function fa is then a solution to the
induced problem on Δ$« for all n >̂ N.

Thus, it remains only to prove the lemma.

Proof of Lemma 1.2. It is convenient to establish at the outset
certain notations which will be useful throughout the proof. We will



THE SECOND COUSIN PROBLEM WITH BOUNDED DATA 383

denote by ZN the set of N-tuples of integers. Let E = {n =
(nu , nN) e ZN: n, ^ 0, , nN ^ 0 or else nx ^ 0, , nN ^ 0}. Given
n e ZN, let E+(n) = {me ZN: nγ ^ mu . , nN ^ m^}, #-(?&) - {m e Z*:
% ^ m l f « , ̂  ^ m^}. If z = (nβ^, , r^e"*) is in UN and ^ =
(φl9 -- ,φy)eRN

y put

JP(*, 9>) = Σ ήniϊ r ^ 1 eίn'{θ~φ)

nezN

and

^ , 9>) = Σ
E

Σ
neE

Here we use n (θ — φ) as abbreviation for n^tft — ̂ ) + 4- nN(θN — φN).
The kernel P is the iV dimensional Poisson kernel. A short calcula-
tion shows that

(1.2.1) K(z, φ) - Re { : } - 1 .

A preliminary reduction of the problem seems desirable. The
function / of the lemma may be written as the sum / — f0 + fλ where
/o(*i, , *N) = /(0, 2,, , ̂ ) and Λ = / - /o. The function /0 is
holomorphic in the product of the Riemann sphere and UN~\ and it
has bounded real part. Thus, it is enough to prove the lemma with
/ replaced by /i. Let fι = u + iv; the function u is bounded. For
0 ^ ρu , ̂ v < 1, we may write

(1.2.2) u(PyβiB\ , ̂ β ^ ) - Σ fiίAϊ)/©!*11 ρι

N

k»ιeik-θ

keE

where u(k) denotes the kth Fourier coefficient of the function u:

' 'ώpL dφN .

Since u = Reft and since /x(0,22, , zN) = 0, it follows that
ίϊ(0, &2, , kN) = 0 for all choices of k2, , kN. Thus the summation
in (1.2.2) extends over the set E+(l, 0, , 0) U E~(-l, 0, •• , 0).

Let h be a real function of class ^^ on the circle which
vanishes identically on a neighborhood of Xι and is identically one on a

neighborhood of λ2. Let h have Fourier expansion h(ei<Pl) = Σ cmeim(pi.

Note that since h is real, c_m = cm. Define gx and f̂2 by means of

Ql(z) =

and

? ~l\dφ .
2π
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Here we have written u(φ) instead of u(eiφi, , eiφ*) and dφ instead
of dφ1 dφN. The integrals extend over —π^φlf - - -, φN <L π.
Since h is identically zero on \, it follows that the function gx is
holomorphic in Vλ x UN~\ Similarly, g2 is holomorphic in F 2 x UN~\
We shall show that gλ and g2 have bounded real parts. We have Re gx

+ Re g2 = u whence for some purely imaginary constant 7, fx =
Qi + (#2 + 7) is a decomposition of fx of the kind we seek. It is
enough to establish the boundedness of Re glm

Since u and h are real, we have

, φ)dφ

(1.2.3) =C0 (-l-y\u(φ)K(z, φ)dφ

Let μm be the measure on TN whose Fourier transform μm is the
characteristic function of {n e Z^: —m + l ^ ^ i ^ — 1} and let vm be
such that £m is the characteristic function of {n e ZN: 1 ^ % ^ m — 1};
the measures μm and vm are of norm no more than C log (1 + m) for
some absolute constant C. Define Am on 3™ by

Λ.(?>) - Cme***(tt - W * μm)(φ) + C m β- ί m ^(^ - U * Vm){φ)

where u * μ denotes the convolution of the function u and the measure
μ. The Fourier series of the function u is

β"-*: A; G JE?+(1, 0, , 0) U E~(-l, 0, . , 0)}

so t h a t of Am is

cmΣ{ύ(k)ei{k *+m^): k G E+(l, 0, . , 0) U E~{-m, 0, , 0)}

+ cmΣJ{u(k)ei^-^): k G E+(m, 0, . . , 0) U ̂ " ( - 1 , 0, , 0)} .

Since fi = 0off E+(l, 0, , 0) U E~(-l, 0, , 0), it follows from the
definition of K(z, φ) and P(z, φ), that

AISO, (J-J \u(φ)K(z, φ) =

Thus the series (1.2.3) is bounded term by term by the series

2C || u |U Σ k» I (1 + log(l + m)) provided z e UN. Since cOT = O(m-2),
m = 0
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it follows t h a t R e ^ is bounded in UN.

We must show t h a t Reg1(zuz2y ---,zN) is bounded for | ^ | > 1,

I z21, , I zN I < 1 1} If Ui I < 1, set z* = 1/z, so \zf\> 1. From t h e

definition of gu we find, af ter a short calculation, t h a t

C/ι(Z1, Z2i * , ZN) 9i\Zι , Z2f > ZN)

Here P(zu φλ) is the one dimensional Poisson kernel. The real part
of the inner integral is bounded in φlf as may be seen from the fact
that if we replace in the first part of our argument the function h
by the function identically 1 and then restrict the resulting function
of z19 , zN to the hyperplane z1 = 0, our argument shows that the
resulting function of z2, , zN is uniformly bounded in UN~\ Thus,

, 22, , zN) - g^zf, z2, , zN)}

is bounded, and the lemma is established.

II* The case of continuous boundary values* If K is a set
in CN, let Jzf\K\ denote the algebra of functions continuous on K
and holomorphic in its interior. Similarly, if E is a commutative
Banach algebra with identity, let J%f[K, E] be the algebra of all
continuous Jξ'-valued functions on K which are analytic in its interior.
There are several formally different definitions of analytic E-valued
functions which are in fact equivalent. For a discussion of these
see [4] For the sake of definiteness, let us say that F: Ω—+E, Ω an
open set in C*, is analytic if given z° — {z\, , z%)eΩ, there is an
expansion

F(z) = Σeh...JN(zx - s°)Ί . (zN - 0Ny*

with coefficient eh ... , N elements of E, where the summation extends over
all N tuples of nonnegative integers, and where Σ II ̂  ... JN \\ pji+ ~+jχ
is convergent for some p > 0. The following theorem obtains.

THEOREM II. 1. Let ^ = {Va}aeA be an open covering of the
closed unit polycylinder U*inCN, and for each a let / α 6 J / [ F α , E],
If for all a, β e A there exists haβ, an invertible element of
*S&\Va Π Vβ], such that on Va f] Vβfa — fβhaβ, then there exists
Fejzf[UN,E] such that for all a e A, F — faha, ha an invertible
element of S^[Va, E].

1 This argument was suggested by W. Rudin as an alternative to a more com-
plicated argument of the author.
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The proof of this result depends on the fact proved by Douady2)

[2, p. 48] that if Δ, A+ and Δ~ are as in the proof of Theorem I.I,
and if F is an invertible element of j^f[(A+ Π Δ~), E] then there
exist invertible F+ e .s^[A+, E] and F_ e s/\Δ~, E] such that on
A+ Γ\Δ~,F = F+F_.

Once one has this fact, it is possible to argue by contradiction
and establish Theorem II. 1 just as Theorem I.I was established.

As an application of Theorem II. 1, we will show that certain
sets in TN = {z e CN: \ zγ | = 1, , | zN \ = 1} are zero sets for elements
of

THEOREM II.2. Let β19 •••, βN be strictly positive real numbers.
Let A be a compact set of Lebesgue measure zero in the real line,
and let GΛ - {te RN\ t β = txβγ + + tNβN e A}. If E is a compact
subset of {(eih, , eitN): t e GA}, then E is the zero set of an element
of

Proof. Define a map Y:CN->CN, by means of Y(zu •• ,«ΛΓ) =
(eiZl, •• ,eΐziv). Regarding RN as the set of points in CN with real
coordinates, we have that Y carries RN onto TN. If Q% denotes the
set {z e CN: Im zό ^ 0 for j = 1, , N}, then Y carries Ql onto a
dense subset of UN. The Jacobian of the map T is e

ί ( z i + # + ^) which
never vanishes, so Y is a local homeomorphism at every point of CN.

Assume initially that there exists a compact set KaGΛ such that
Y[K] = E. In general no such set K will exist, but we shall excise
this difficulty later. If t e RN, let

J(t, ε) = {s G Q*: K - ^ | < ε, , | tN - zN | < ε}

this is a certain product of half discs. For each t° e K, let ε(t°) be
such that Y carries J(t°, e(t°))~ homeomorphically onto a closed (relative)
neighborhood V(t°) of the point s° = Y(t°). There is δ > 0 such that
A'(s\ 3) = {z G UN: I 8? - ^ I < δ, , | s°N - zN \ < δ} is contained in V(t°).

Let rro

le. F(ί°) -> A(t\ e(t°))~ be inverse to Y. By compactness,
finitely many of the sets Yγι[A'(s\ δ/2)] will cover K. Let the A'{s\δβ)
corresponding to such a cover be Δ'(s', δ/2), j = 1, , q, and let the
corresponding Y^1 be Yj\ j = 1, , ̂ .

The set Λ is a compact Lebesgue null set, so the Rudin-Carleson
theorem [6, p. 81] applied to Q+, the upper half plane, yields a function
F continuous on Q+, holomorphic on Q+, which vanishes exactly on
the set A. Define H on Ql by H(z) = F(A*i + + βNzN). The
zero set of H is the set GΛ.

Define Fά on Δ\s\δ) by fj = HoYj\ The function /^ is in

2 I am indebted to the referee for this reference.
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jχ?[Δ'(sj,δ)\ and vanishes on T[K f] Δ(tj, ε(tj))~]. Consequently [8],
there is g5 e Sz?[Δ'(sJ, <?)] which vanishes exactly on the part of
r[Kf] Δ(t\ ε(P))-] which lies in Δ'(sj, δ/2).

Let Wj = {ze UN: for some k = 1̂_ — , ΛΓ, \zk - β£| > 3δ/4}. Let
gό be the function identically one on Wj9 Since on W3 Π Λ'(sJ', <5), gά

is zero free, the functions gά and ^ constitute a set of Cousin
II data to which Theorem Π.l can be applied. We conclude that
there exists Fό e J^[UN] which vanishes exactly on the part of
T[K Π Δ(t\ e (tj))-] which is contained in Δ'{s\ δ/2). Define F to be
the product of the finitely many functions F5 so constructed. The
function F has Ύ[K] = E as its zero set.

In the case that the set D does not exist, we may write E = u Ek

where Ek = Ύ[Kk], Kk a compact set in GΛ. The remark on page 435
of [5] or the simpler Corollary 1.2 of [8] now implies that E is the
zero set of some element of <s$f[UN],

Let us note that in the light of Theorem 1.1 of [8], this theorem
generalizes Theorem 4.6 of [7], the case that A = {0}.

It should be noted that Theorem II.2 is contained as a special
case of more general results of Forelli [3] which are obtained by
studying measures orthogonal to Ssf[UN],

Acknowledgement is due the very useful correspondence the
author has had with Professor Walter Rudin on the subject of the
present paper.
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