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A CHARACTERIZATION OF INTEGRAL OPERATORS
ON THE SPACE OF BOREL MEASURABLE

FUNCTIONS BOUNDED WITH RESPECT
TO A WEIGHT FUNCTION

LOUISE A. RAPHAEL

Let 7 be a Borel set of the real line R, C the space of
complex numbers, V a <χ-algebra of Borel subsets of I, μ a
fixed measure on V such that for any bounded set Q e V,
μ{Q) < °°9g(λ,p) a nonvanishing complex valued function μ-
measurable in λ e / such that \g(λ,/p)\\ in p where p belongs
to a fixed open interval (α, 6), and S the set of ^-measurable
functions u from / into C such that | u(λ)g(λ, p)\ ^ m for some
p depending on u,pe (α, 6), m ^ 0 and m depending on u, and
for all λ e I. The purpose of this paper is to prove the follow-
ing:

THEOREM 1. Let c(λ, S) be a μ x ^-measurable function on
I X I. For every function ueS the function

y(λ)=[c(λ,δ)u(δ)dμίδ),Q,δ)elx I

is well defined and yeSif and only if for every p e (α, b)
there exists a q£(a, b) such that

1 I g(λ, q)c(λ, δ)(g(δ, p))"1 \ dμ(δ) ^ m

for all (λ,δ)elx I and some m ^ 0.

Two examples of the space S are:
(1) Let / be the Borel set [0, oo], C and V as before, μ the

Lebesque measure, and g(X, p) = eλp where p is some real number and
Xel. Then S is the set of all functions u which are μ-measurable
from / into C and whose Laplace tranforms I eλzu(λ)dμ(X) exist.

(2) A complex sequence u = {un}~=0 is analytic if and only if
there exists some constant M > 0 such that | un \ ̂  Mn+1 for (n =
0,1, 2, •) if and only if the supu | pnun \ ̂  N for some p > 0, constant
N>0, and (n = 0,1,2, •)• Now let / be the set of nonnegative
integers, C and V as before, μ(Q) = number of elements of a set
Q G F and g(λ>, p) = pι where pe(0, oo) ?λeJ. Then S is the space
of all complex functions analytic at zero, or the space of analytic
sequences, which will be henceforth denoted by A.

In light of Example (2), it is clear that Theorem 1 gives as a
corollary a necessary and sufficient condition for infinite complex
matrices to map A into itself. At the end of the paper it is shown
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that this corollary is equivalent to I. Heller's characterization [3, Th.
1, p. 154], namely,

PROPOSITION 1. The transformation yλ = Σr=o cλδuδ maps A into
A if and only if for every p > 0 there exists a g > 0 and a constant
M > 0 such that \cλδ\^ Mp5/qλ for all (λ, δ = 0,1, 2, - •).

In [4] an alternative proof of Heller's result was given. And
now the functional analysis techniques developed therein will be used
to gain insight into the structure of S as a countable union of Banach
spaces, and thereby to prove Theorem 1.

F o r e v e r y fixed p e (α, b) l e t Sp = {ue S\\ u(X)g(X, p) \ ^ m) f o r

all λ e I and || u \\p = sup^e/ {| u(X)g(X, p) |}.
Let BM denote the set of all bounded ^-measurable functions u*

from I into C with \\u* \\BM — sup^6/1 w*(λ) |.

THEOREM 2. ( 1 ) S = U"=o SPn where {pn}~^ is a sequence of
numbers from (α, b) such that pn [ α, and

(2 ) for every p e (α, 6), (SP, \\u\\p) is a Banach space.
Proof. If r < s where r and s e (α, δ), then SsaSr. A set theo-

retic argument completes the proof.
( 2 ) It suffices to observe that (Sp,\\u\\p) is isometrically iso-

morphic with the Banach space {BM, || u* \\BM). The operator Ep from
Sp into EM establishing this maps u into u* where u*(\) = u(λ)gf(λ, 2>)
for all λ e l .

THEOREM 3. Let c*(λ, δ) 6β defined on I x I such that

is ^βW defined for all u* e BM, (λ, δ) e I x I <md ίΛe obtained func-
tion y* = C*(i6*) 6 BM. T%ew ( 1 ) C* is a linear continuous operator
from BM into BM, and

( 2 ) | | C * ||

Proof. ( 1 ) For each λ e /, let hλ(u*) - ( c*(λ, δ)u*(δ)dμ(δ). It is

now shown that for each λ e /, /^ is a continuous linear functional from

BM into C with | | /^ | | = ί \c*(X,δ)\dμ(δ). For each λ e / , and non-

negative integer n define c*(λ, δ) = cn(X, δ)χQn(δ) where

i f

i f
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where Qn = I n [ — nt n], and χQn is the characteristic function of Qn.

Define for each λ e J, {hλ{u*))n = ί c*(λ, δ)u*(δ)dμ(δ). Clearly for each

λ e l , (hλ(u*))n is a continuous linear functional on BM. And now as

the hypotheses of the Dominated Convergence Theorem are satisfied,

(hχ(u*))n > hλ(u*). That hx(u*) is linear and continuous follows
from [2, Th. 17, p. 54].

From this last property, it follows that \hλ(u*)\ ^ || hλ || | l % * IU*
for all u* e BM. In particular, for each Xel, let

I C ( λ , d) I

where B = I — {δel\ c*(λ, δ) = 0} and ! denotes complex conjugation.

So u*λ is a bounded /^-measurable function such that \\u*λ\\ ̂  1. Sub-

stituting w0* for w* yeilds | hλ(u}λ) | =

Conversely, for any w* € iϊikf,

or || Λj || ^ ί I c*(λf δ) | dμ(δ). And so || hλ || = I | c*(λ, δ) |

M o r e o v e r , f o r a l l λ e / a n d a l l u* e BM, \ hλ(u*) \ = \ y*(X) \^\\y* \\SM.
B y t h e U n i f r o m B o u n d n e s s T h e o r e m , || A λ | | ^ P f o r a l l Xel a n d so

a - s u p ; e / i \ I c*(X9 δ) I dμ(δ)> g P . B u t | hλ(u*)\ = | y*(X)\ ^ α 11^*11**.

A n d t h u s f o r a l l u* eBM,\\y*\\BM = \\C*(u*)\\BM £a\\u*\\SM. T h i s
implies that C* is continuous from BM into itself and that || C* || ^ a.

( 2 ) As (7* is a linear continuous operator from BM into 2?ikf

ί c*(X,δ)u*(δ)dμ(δ) ^ || C* || || n* \\BM for all u*eBM. Substituting

utλ (defined above in (1)) for u* yeilds \ | c*(λ, δ) | d^(δ) ^ || C* || for each

Xel. Thus α ^ | | C * | | . And so || C*\\ = a.

THEOREM 4. Let c(X, δ) 6e α function defined on I x I such that

for all ue S, y(X) = 1 c(X, δ)u(δ)dμ(δ) is well defined and y e S. Put

y — C(u). For each p and q fixed and belonging to (a, b), let Spq —

{ueSp\C(u)eSq}. Then
(1) Sp = \Jn=o Spqn where qn \ a for any p e (a, b), and
( 2 ) (Spq, || u \\vq = \\u Up + || C(u) \\q) is a Banach space.

Proof. ( 2 ) If the graph of C is closed in Sp x Sq, then

(Z, \\u\\p + ||C(w)||β)

where Z — {(u, C(u)) \ue Sp} is a Banach space. And as the mapping
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from Spq into Z defined by u —> (u, C(u)) establishes an isometric
isomorphism between Spq and Z, it suffices to prove that the graph of
C is closed in Sp x Sq.

For each λ e /, let

kλ(u) =

Here Ep:u—>u* is the isometric isomorphism from Sp into jBikf, and
u*(X) = u(X)g(X, p) for all λ e ί . As kλE~ι is a linear continuous
functional on 5Λί, it follows that kλ is a linear continuous functional
on Sp for each Xe I. This with the uniqueness of limits in Sq and
the Closed Graph Theorem, prove that C is closed in Sp x Sq.

THEOREM 5. Let c(X, δ) be a function defined on I x I such that

for all ue S, y(X) = I c(λ, δ)u(δ)dμ(δ) is well defined and y e S. Put

y = C(u). Then
( 1 ) for every pe(a,b) there exists a q e(ayb) such that ue Sp

implies C(u) e Sq.
The operator C from Sp into Sq generated by c(λ, δ) is
( 2 ) linear and continuous, and

( 3 ) its norm, \\C\\ = sup^/ j I g(X, q)c(X, δ)(g(δf p))~' \ dμ(δ) < oo.

Proof. ( 1 ) From Theorem 2. (1), S = U?=o S,w where {gΛ}Γ=0 € (α, 6)
and qn [a. As C maps S into itself, for any p e (α, 6), C maps Sp into
U«=o iSffn. But Sp = [Jn^o SPQn by Theorem 4. (1). Now as the injective
maps from SPQn into Sp are continuous for all p and qni by [5, Corollary 6,
p. 205] or [6, Satz 4.6, p. 472] there exists an index qke{a,b) such
that Sp = SPQk. So ^fc is the desired number.

( 2 ) The linearity of C is clear. And by definition of the Banach
norm \\u\\pq on Spq, C is continuous from Sp into Sq.

( 3 ) Map Sp into J5ikf by the operator Ep: u—>u* where u*(X) =
u(X)g(X, p) for all Xel. Define the operator C* to be EqCE~x where
p, q e (α, b). C* is a linear and continuous operator from BM into
itself whose norm is given by Theorem 3 (2). But || C* || = || C\\.

Proof of Theorem 1. Necessity follows immediately from (1) and
(3) of Theorem 5.

Conversely, let ueS and y(X) — I c(λ, δ)u(δ)dμ(δ). Now for any

p, q e (α, 6)

I y(\)g(\, Q)\^\χ\ 9(\ q)e(X, δ)(g(δ, p))^ \. | g(δ, p)u(δ) \ dμ(δ)

^\\C\\-\\u(δ)g(δ,p)\\BM£M.
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Moreover as (/, V, μ) is a totally σ-finite measure space, the /^-measur-
able function u(δ) defined to be u"{X, δ) is μ x /^-measurable. An
application of Tonelli's Theorem completes the proof that y(X) is μ-
measurable. And so y(X) e S.

If N is the set of nonnegative integers, c(X, δ), where (λ, δ)eN x N,
can be identified with an infinite complex matrix (cλ9). Clearly (cλδ)
is μ x μ-measurable on N x N.

COROLLARY TO THEOREM 1. The transformation C generated by
an infinite complex matrix (cλδ), (λ, δ) eN x N defined by yλ =
ΣΓ=o cλδuδ maps the space A of analytic sequences into itself if and
only if for every p > 0 there exists a q > 0 such that

sup Σ Qλ I <>λδ \p~δ ^ k for (X,δ)eN x N , constant k > 0 .

The next proposition shows that this corollary is equivalent to
Heller's characterization, Proposition 1.

PROPOSITION 2. For each p > 0 there exists a q > 0 and a constant
k > 0 such that sup^e/ Σ*7=oQλ I oλδ \p~8 ^k if and only if for each p > 0
there exists a r > 0 and a constant m > 0 such that \cλδ\ <: mpδ/rλ.

Proof. Sufficiency. Let p > 0 and let p ' be such that 0 < p' < 1.
Then pp' > 0. Given there exists a r > 0 such that \cλδ\ g m(pp')*/rλ

for all (λ, δ)eN x AT, and so Σr=or* | c^ | p~* ̂  m(l - p')~\ for each

In conclusion, it is natural to ask: (1) which analytic functions
/ in the half plane Re (z) ^ r can be represented by the integral
f(z) = I u(X)eλzdμ{X) where the determining function ue S, I is a Borel
set of the real line and μ is the Lebesque measure; and (2) to which
classes of measurable functions can Theorem 1 be generalized? It is
thought that Theorem 1 can be generalized to (a) Bochner measur-
able functions bounded with respect to a weight function simply
by using a Fubini theorem in place of a Tonelli theorem in the
sufficiency proof of Theorem 1, and (b) Borel measurable functions
essentially bounded with respect to a weight function, where two
functions are equal if and only if they coincide everywhere, by using
the lifting property of A. and C. Ionescu-Tulcea.

The author wishes to thank Professor W. Bogdanowicz for enlight-
ening discussions on the subject of this paper.
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