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MAXIMAL NONNORMAL CHAINS IN FINITE GROUPS

ARMOND E. SPENCER

In a finite group G, knowledge of the distribution of the
subnormal subgroups of G can be used, to some extent, to
describe the structure of G. Here we show that if G is a
finite nonnilpotent, solvable group such that every upper
chain of length n in G contains a proper subnormal entry then:

(1) the nilpotent length of G is less than or equal to n.
(2) I G I has at most n distinct prime divisors, further-

more if I G I has n distinct prime divisors, then G has
abelian Sylow subgroups.

(3) if I G I has at least (n — 1) distinct prime divisors,
then G is a Sylow Tower Group, for some ordering
of the primes.

(4) r(G) < n, where r(G) denotes the minimal number of
generators for G.

Before proving these results it is necessary to have a few lemmas
concerning upper chains and subnormal subgroups. All groups are
assumed to be finite.

An upper chain of length r in G is a sequence of subgroups,
G — GOZD G1i) z> Gr where for each i, Gi is maximal in G^. Janko
[4] has described the finite groups in which every upper chain of
length four terminates in a normal subgroup. We define the function
h(G) as follows:

DEFINITION 1. h(G) = n if every upper chain in G of length n
contains a proper (^G) subnormal entry and there exists at least one
upper chain of length (n — 1) which contains no proper subnormal
entry.

Note that since a subnormal maximal subgroup is normal, h{G) = 1
if and only if G is nilpotent. From the definition it is clear that if
h(G) = n then there exists an upper chain of length n such that only
the terminal entry is subnormal in G. Such a chain is called an h-
chain for G. The following two lemmas are simple modifications of
Lemmas 2, 3 [2].

LEMMA 1. If H is a nonnormal maximal subgroup of G, then
h(H) ^ h(G) - 1.

LEMMA 2. If N is a normal subgroup of G, then h(G/N) ^ h(G).

LEMMA 3. IfG = HxK, where h(H) ̂  2, then h(G) ̂  h(H) + m,
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where m is the length of the longest chain in K.

Proof. Let H — HQz^ Hλzz) ZD Hr be an fe-chain for H and
K = Ko ZD Kx ZD ID Km = ζΐ} be the longest chain in K. Then in
H x K the upper chain:

Ho x K0Z) H, x KOZD H, x K, ZD H, x K2ZD - ^ ZD H, x Kn

has (r + m) entries. If one of these entries is subnormal in G, then
its projection on H is subnormal in H. However these projections
are simply Hl9 H2, •••,#,., and of these, only Hr is subnormal in H.
Thus h(H x K) ^ r + m.

For reference it is convenient to note here the notion of a
Saturated Formation as defined by Gaschutz [3].

DEFINITION 2. A Formation j ^ ~ is a collection of finite solvable
groups satisfying:

(1)

( 2 ) If G G J^", and N < G, then

( 3 ) If G/Ή G ^ - , i = 1, 2, then G/W n iV2) G

A formation . ^ is called saturated if given a group G which
does not belong to ^~, if ikf is a minimal normal subgroup of G,
such that G/MeJ^, then Λf has a complement in G, and all such
complements are conjugate. Gaschutz showed later that conjugacy
follows from existence and furthermore saturation can be characterized
as follows:

A formation ^ is saturated if whenever G/φ(G) belongs to ^
then G also belongs to ,^ r , where ψ(G) denotes the Frattini subgroup
of G. The collection of all finite solvable groups constitutes a forma-
tion, as does the collection of all finite nilpotent groups. This can
be extended in a natural way to a theorem on all groups having a
given bound on nilpotent length. By the nilpotent length (denoted
by ί(G)) of a solvable group we mean the length of the shortest
normal chain with nilpotent factors. Example 4.5 [3] shows that the
set, ^ 1 , of all solvable groups G such that the nilpotent length of
G is less than or equal to n is a saturated formation for each n.

Theorem 1 shows the relation between h(G) and l(G).

THEOREM 1. If G is a solvable group then l(G) ^ h(G).
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Proof. The proof is by induction on h(G), the theorem being
trivially true if h(G) = 1. So suppose the theorem is true for all
groups K such that h(K) ̂  (n — 1) and is false for some group K
where h(K) = %. Among such groups let G be one of minimal order.
We show that such a group G cannot exist. Let I be a minimal
normal subgroup of G. By Lemma 2, h(G/M) ^ h(G) = w so that by
the minimality of G, l(G/M) ^ n. If JV is another minimal normal
subgroup of G, then by the same argument l(G/N) g w. By the
saturated formation property l(G/(M Π N)) ̂  w. Since M (~) N = <1>,
this is impossible, so M is the unique minimal normal subgroup of G.
By the saturated formation property and minimality of G, M has a
complement L in G. G = ML, M Π L = <(1)>. Since M is the unique
minimal normal subgroup of G, L is a nonnormal, maximal subgroup.
By Lemma 1 h(L) ^ (n — 1). Hence by the induction hypothesis,
l(L) ^ (n - 1). Since L ^ G/ikf and M is abelian Z(G) ̂  n. This is
a contradiction, therefore G does not exist.

By looking at the holomorph of a group of prime order p where
p = 2nk + 1 we see that no converse to Theorem 1 is possible, i.e.,
it is possible to have l(G) = 2 and h(G) arbitrarily large.

For notation purposes let π(G : K) denote the number of distinct
prime divisors of [G: K], with ττ(G:<Ύ» denoted simply by π(G).
Then there is a relationship between h(G) and π(G).

THEOREM 2. If G is a solvable group such that h(G) < 7r(G) then
h(G) — 1, i.e., G is nilpotent.

Proof. Suppose the theorem is false and let G be a counter-
example. Let P be a nonnormal Sylow subgroup of G. Consider an
upper chain from G through NG(P) to P. Since G is solvable this
chain is at least (π(G) — 1) entries long. Thus by hypothesis this
chain must contain a subnormal entry. However NG(P) is not con-
tained in a proper subnormal subgroup, and if NG(P) contains a sub-
normal subgroup containing P, P is subnormal. But a subnormal
Sylow subgroup is normal. Thus we have a contradiction so G cannot
exist.

S3, the symmetric group on three symbols, has: h(S3) = π(S3) = 2,
showing that the arithmetic condition of Theorem 2 cannot be relaxed.
However this does suggest the question of what structure follows
from the hypothesis that h(G) — π(G) is small. G is called a Sylow
Tower Group (STG) if G has a normal Sylow subgroup, and every
homomorphic image of G has a normal Sylow subgroup.
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THEOREM 3. // G is solvable and h(G) — π(G) ^ 1, then G is a
Sylow Tower Group for some ordering of the prime divisors of G.

Proof. The proof is by induction on h(G), the theorem being
trivially true if h(G) = 1. Suppose the theorem is true for all groups
K for which h(K) < n, and is false for some group K for which
h(K) — n. Among such groups let G be one of minimal order. We
will show that G cannot exist thereby proving the theorem. G must
satisfy the following:

(1) Every nonnormal maximal subgroup of G is STG.
Let H be a nonnormal maximal subgroup of G. π(G : H) = 1 so

π(H) ^ (n - 2). By Lemma 1, h(H) ^ (n - 1). Thus by the induction
hypothesis H is STG.

(2) G does not possess a normal Sylow subgroup.
Suppose P is a normal Sylow subgroup of G. Let K be a sub-

group maximal with respect to the properties: iΓ 3 P, K <\ G, K is a
Hall subgroup of G, K is STG. Then <l>c: #<=(?, and G/K does not
possess a normal Sylow subgroup since K is maximal with respect to
the property of being STG. K is a normal Hall subgroup so K has
a complement L. L = G/K so L is not STG. L is Hall so iV(L) is
abnormal, so if N(L) Φ G, N(L) is contained in an abnormal maximal
subgroup whence by (1) is STG. This contradicts the fact that L is
not STG, so N(L) = G, and G = H x L. Suppose π(K) = m, then
π(L) = τr(G) — m so Λ(L) ^ τr(G) — m + 2 by induction. Hence by
Lemma 3, h(G) ^ (π(G) — m + 2) + m = π(G) + 2 which is a contradic-
tion, so P does not exist.

(3) G possesses a unique minimal normal subgroup M; further-
more G/M is supersolvable.

Let M be a minimal normal subgroup of G. By (2), M is not a
Sylow subgroup. Thus π(G/M) = π(G). h(G/M) S h(G) so by the
minimality of the order of G, G/M is STG. Now the groups having
a Sylow tower for a given ordering of the primes constitute a satu-
rated formation [1], Thus M has a complement L in G, and L is STG.
Let L = Lx > L2 > > Lw_! > Lw > > <1> be a Sylow tower for
L. We refine this chain and adjoin G to obtain an upper chain. If
for any i < n, L^JLi is not simple, Ln is subnormal in G. However
this will give rise to a normal Sylow subgroup in G, contradicting (2).
Hence each L^^/Li is of prime order and Ln is cyclic. Hence L
is supersolvable. We have shown that the factor group to a minimal
normal subgroup is supersolvable. Therefore if G has two distinct
minimal normal subgroups Nx and JV2, then G/N{ is supersolvable
i = 1, 2, so that G/(iSΓ1 n N2) is supersolvable. Since ΛΓX Π JV2 = <1>
this implies that G is supersolvable. However supersolvable groups
are STG, so M is unique.
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Using the same notation as in (3), since L does not contain a
nontrivial normal subgroup, L does not contain a nontrivial subnormal
subgroup thus from the chain obtained above we see that | L | is
square free.

Since L is supersolvable we may assume that the Sylow subgroup
for the largest prime is normal in L. Let \ M\ = pa, p prime. Sup-
pose Q is a Sylow g-subgroup of G where q is the largest prime
divisor of \G\. We may assume p Φ q, Q < L, in fact N(Q) = L.

( 4 ) ! G I = 24, h(G) = 3.
Let P be a Sylow p-subgroup of G. Then since \L\ is square

free, | P\ = | M\ p.
We may assume that P contains a Sylow p-subgroup T of L.

Then since T is not subnormal, P contains a maximal (in P) non-
subnormal (in G) subgroup J. P = MJ, [P : M Π J] = p2. Now J is
(n — l)-th maximal and not subnormal, and h(G) — n, thus each maxi-
mal subgroup of J is subnormal in G. Hence J has just one maximal
subgroup, and so J is cyclic. However M is elementary abelian, there-
fore I ilίf Π e/1 = 1 or \ M f) J\ = p. Thus \M\ = p or p2. However
I MI = [G : L] = 1 (mod g), by the Sylow theorems. Now p < q so
I Λf I = p2. Since g I (p2 — 1), q = p + 1, so that q = 3, p = 2, and
I G I - 24, λ(G) = 3.

( 5 ) The final contradiction.
Note that G is not S4 since h(S4) = 4. Now in G the subgroups

of order 2 are subnormal. Thus the normalizer of the Sylow 3-sub-
group is cyclic. By Burnside's theorem the 3-Sylow subgroup has a
normal complement contrary to (2). Thus G does not exist.

Note that h(S,) = 4, τr(S4) - 2 and S4 is not STG.
In the special case where h(G) — τr(G), even more can be said.

THEOREM 4. // G is solvable and h(G) = π(G) ^ 2, ί/^w the
Sylow subgroups of G are cyclic or elementary abelian. Further-
more if there exist at least two nonisomorphic nonnormal Sylow
subgroups of G, then all nonnormal Sylow subgroups of G are of
prime order.

Proof. Let ττ(G) = h(G) — n. Let P be a nonnormal Sylow sub-
group of G. As in Theorem 2, π(G : P) = (n — 1) so that P is at
least (n — l)-th maximal in G.

Considering a chain through ΛΓ(P) to P, as in the proof of Theo-
rem 2 we see that this chain can have at most (n — 1) entries, hence
exactly (n — 1) entries. Therefore P is cyclic, since every maximal
subgroup of P is subnormal in G, and P is not. In this chain we
have (n — 1) distinct primes and (n — 1) entries. Therefore each entry
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is a Sylow complement in its predecessor. However this implies that
the Sylow subgroup is elementary abelian. If there were two non-
normal Sylow subgroups, then by this same argument P is elementary
abelian. However P is cyclic so that P is of prime order.

Note that under the hypothesis of Theorem 4, if we let K denote
the product of all the normal Sylow subgroups in G, then K is abelian
and G/K has cyclic Sylow subgroups, so that l(G) ^ 3. Also we should
note that an extension of the Quaternion group of order 8 by an
automorphism which permutes the subgroups of order 4 will yield a
non-A-group G having h(G) — 3 and π(G) = 2.

To see how these theorems restrict the structure of a solvable
group in a particular case, consider the groups G having h(G) = 2.

THEOREM 5. Suppose h(G) = 2. Then G = PQ; P and Q are
Sylow subgroups of G; P is a minimal normal subgroup; Q is cyclic;
Qu the maximal subgroup of Q, is normal in G, in fact, Qλ — φ(G) —
Z(G).

Note that a theorem due to Rose [5] shows that h(G) = 2 implies
solvability for G. More generally, we can effectively duplicate the
proofs of the theorems in [2] to prove:

THEOREM 6. If G is a finite group, and h(G) ^ 3, then G is
solvable. Moreover if h(G) ^ 4 and (| G |, 3) = 1, then G is solvable.

Note that A6, the simple group of order sixty, has h(Aδ) = 4.
The groups described in Theorem 5 have the property that they

can be generated by two elements. This can be extended to a more
general theorem.

Let r(G) denote the minimal number of generators for G.

THEOREM 7. // h(G) ^ 2, then r(G) ^ h(G).

Proof. The condition h(G) Ξ> 2 is certainly necessary since we
can find abelian groups K with r(K) large. To prove Theorem 7 we
only need to note that the next to last entry in an Λ-chain for G is
(h(G) — l)-th maximal in G and is cyclic.
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