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INTEGRAL INEQUALITIES INVOLVING
SECOND ORDER DERIVATIVES

JAMES CALVERT

An integral inequality involving second order derivatives
is derived. A most important consequence of this inequality
is that the Dirichlet form

Dlw, u) = S > auDuD}i = qluldz 2 0,
D%

for functions ¢(x) which are positive and °“'not too large’ in
a sense which will be made precise later and for functions
u(x) with compact support contained in D. Some examples are
given and an application is made to an existence theorem for
a fourth order uniformly elliptic P.D.E.

An earlier paper by the author [1] contains some similar results
for inequalities involving first derivatives. The following definitions
and notations will be used throughout the paper. Let

x=(xlsm27 "'yxn)eRn°

Let D be an open domain in R* which may be unbounded. Let C=(D)
denote the set of infinitely differentiable complex valued functions on
D and let Cy(D) denote the subset of C=(D) consisting of funections
with compact support contained in D. Let

n 1/2 22
Hulle = (S 2| D | + QIulzdx) , where D = 2%

D i=1 0x?

k3

and ¢ is either equal to 1 or to one of the positive functions to be
defined later. Let H,D) be the completion of {u e C=(D): || u||, < oo}
with respect to || ||, and let IfIq(D) be the completion of C(D) with
respect to ||« |,. The functions w in H,(D) or I;Iq(D) have strong L,
second derivatives which we will denote by the same symbol as for
the oridnary derivative. So that

lim S | Dow — D, |*de = 0
D

n—ro0

where {u,} is any sequence of elements in C=(D) such that || u—wu, ||,—0.
All coefficient functions considered will be real valued. The variable
functions % may be complex valued. There do not seem to be any
analogues of the basic results with complex valued coefficients.

THEOREM 1. Suppose that the boundary of D is smooth enough
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40 JAMES CALVERT
to apply Gauss’ Theorem. Let a; € C'(D) and (a;) be symmetric
positive definite. Let f,, fsy +++, fo€ CYD), ¢, = (fi + D.)f. and sup-
pose that >;a,9; <0, for every k=1,2,.--,n. Then, for any
u e CY(D),

|, S euDubia — (fi + Df(aua) | u de

D i,

= Si) % [auq:Dy | |* — (D(@ug:) + 2a:9:f3) | % [F]vids
where v, is the k'* component of the normal and the integral on the
integral on the right 1s assumed to exist. FEquality holds if and
only +f Diw = qu and Du = fu, for every 1.
Proof. We shall require two integrations by parts.

S a,.q:(uDiu + uDiw)dx
D

= —Sn[aiinDku + uD(a:,9:)] D%
+ [a:q:D + 4D (a;,q:)] D udw
+ X.aiin(aDku + uD, )y, ds
b

= | Di@ua) |uf = 2040 | Do do
+ Sb[aikqka |w]* — Dy(augs) | wlvuds
and
—SDaikqifk(ﬁDku + uD,u)dx
= SDDk(aiinfk) |u |*de — Sl.)ai,,qifk ||y, ds .
Z; au(Diw — qu)(Dit — %) — 23, 0uq; 3| Dyw — fru[ = 0
L 3, auDuDiL — (fi + Daug, | ud

= X S, — (fi + DYauq, | ul* + ang(uDia + @Du) — auq:q. | |?

D5k
+ 2a,9( Dyu | — fiuDya — frLuDyu + fi|u [*)da
= SD % — lawfiqw + fiDi(auq) + D@ fiq:) + Diang)] | v

+ [Di(@:x9:) — @id:qr + 2D(@:19: 1) + 205.9: f3] | u [P
— 2049; | Dyw [* + 2a49; | Dyu [Pda
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+ ; Z’: [@iq:Dy | u P — Dy(ang:) | w|* — 2:.9:f% | u [*]v,ds

= | Sl0uat = @) = £iD@ua) + Diawfia)] | ulide
= S > [—auq:Di fi. — fiDi(@uq:) + D@ fi9:)] | v ['de

SD @i gDy | U P — Dy(@ugs) | w | — 2a,9:f | w|*v.ds ,

which was to be shown.
(1) We will reserve the notation ¢(x) for a positive function of
of the form q(x) = 3%, (fi + D;)’a.q,.

COROLLARY 1. Suppose that D is any open set. If a;,(x) is uni-
formly bounded tn D, then

S Zk aDuDin — q|ulde =0,
D i,

for every ueIofq(D) and equality holds if and only if Diu = qu and
Dy = fiu almost everywhere, for each 1.

Proof. It is easy to obtain the inequality for functions in C$(D)
by integrating around a sphere containing the support of . The re-
sult for we H(D) can then be obtained by showing that

D D
which follows easily from Cauchy’s inequality.

COROLLARY 2. If (a;) ts only positive semidefinite, the same in-
equality holds but the conditions for equality are mot mecessarily the
same. If a;, =1, the conditions are

> (Dw —qu) =0 and Du = fu.
ExamMpPLE 1. Corollary 2 can be used to obtain inequalities when-
ever a solution u, of a plate problem
dduw —pu =0 in D

=01 D
du =0
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is known. Here du = 3}, Diu and 4d4u = >;, D:Diu. Suppose that
u, >0 in D and let f, = (D,u,)/u,. We must show that

S (i + Df= 52 <o,

% U,
For this it suffices to show that >, Diu, <0. If 3, DW= pu, =0
and v=0 on D, then v <0 by the maximum principle. Set v =
> Diu,, then v satisfies the problem and hence Y, Diu, <0 in D.
Calculate

3, (fi+ D+ Do f = 5 2000 g

1

So
S S, DuDia — plufds 2 0, for uweCy(D).
D i,

In particular, for p = rg, where )\ is the first eigenvalue of the plate
problem and u, is the corresponding eigenfunction, the inequality be-
comes Rayleigh’s characterization of the first eigenvalue. In this case,
the conditions for equality become w = ku,.

ExAMPLE 2. Suppose n = 5, then

|, 5 Dbt - 2O (S ) upds 0,

D Gk 16

for every ueIof.,. To apply Corollary 1, let f, = (a/s)x,, where s =
»_, a? then

q=Ur—2 2
s?

S =Mt Mm=2) g if 2 _n<a<o

k=1 S

(the other possibility leads to nothing of interest). Calculate,

g = —é‘;a(a — 20— @ - n)la— @ — ).

Then ¢ >0, if a <0,a —2>0, and a =4 —n. If we choose a =
(4 — n)/2, then ¢ is maximal and equal to (n’(n — 4)%)/16.

It is unfortunate that the preceding example is only good for
dimensions larger than five. The following inequality, though unap-
pealing, does yield an example for every dimension.
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THEOREM 2. Let f, fs, +++, fo€ CY(D) and suppose that

Zk Difi 161" + (Difi + Difi + fif)éEr = 0
for every wvector (§,,&,, -+-,&,). Then

| = DuDia — (DiD.f, + 37.D.D:f: + £.D3 5,
+ 2f1Difs + 4f.fDufi + (Dot + (Duf)D:f)
+ (DSID:F) + 1wl de
= |, S [2Re DS D — £, | D
— (DD f; + 2fiD:fi + fiD.f:
+ fiDif + Fif)luvids .

Proof.
(2) % [Diw — D(fw)l[Diuw — D, (fw)] — D.f; | Dyw — fru*
— (Duf: + Difi + fifi) (D — fu)D,a — fre) = 0

when expanded the first term in (2) contains the following two terms
which we integrate by parts:

~Di(fw)Din — D(fa)Diw and D(fu)D(f.%) .

Notice that the order of summation has been changed in the first
term.

—S Dy(faw)Diw + D(fa)Diudx
D
= | DD(sw)DT + DD ) Dude
D
- Sb[Di(fiu)Dka + D(fiw)Dyuly,ds
= | (DD, + DifiDiu + DufiDau + £DDa) D
D
+ (uD.D;f; + D,f:D,u + D, f;:Du + f.D,Du)D,u
— S[. . ‘])Jde
D
= SDDkDifka |u* + fiD; | Diw|* + 2D, f; | Dyu °
+ D, f:.DuD 7w + D, f.DaDudx
- S[ -+ Jvids
D
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(3) =\ —@Dif) |uf + (Dif) | Deu
+ D, f;:DuD,w + D, f:DuD,udx
+ | [=2Re D(Sa)Dy + DuDifi|ul* + £i| Dy uds

and

[, = Difa D siwrda

= SD 2 Dif JDefi) [wl* + fuDif) Dy + wD)
+ fif(Dau)(D,w)de
= SD 2 Df)Defi) [l = DlFDif)] [w [ + fufu( Daw)(Dsi)d

+ |, S5Df) lupwds
(4) =% - 2@ [0 + FifD)DiBe
+ |, SADS) |uds
The second term in (2) contains
(5) | fiD:fuD,w + WD)
= —| 1DufaDf) + £.DDf] [ do
+ Sbka,-fi |u v, ds .
The third term in (2) contains
[, S Dufi + Difo + fif ) D + faDan)ds
= |, SADufi+ Difi + £ufID, [ do
(6) = | S DUSDuSi+ £Df + Fif) |ulde
+ |, SADuS+ Difi + £ [ulds .

Expanding (2) and making use of (3), (4), (5) and (6), one can
obtain the advertised result.

COROLLARY. Suppose that f; is a function of xz; alone. Then
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SD Zlé DwuDiu — ;‘, [Dif; + AfD:f; + AF:D:f + 2(D. f.) ] | w2
= 2 2fiDifs + (Duf)Dif) + fifil || do
=0, for every uc H,
where q is the coeffictent of |u |’
ExampLE 3. Let f; = a/x,. Then
2 Dufil &l + (Difi + Dify + fifi)Eds

=S - glars

E@+Z—ﬁ

3

:azézé_k az Zlélz 2(12 I&;,z

4”krczlv:

S@-aX|arnl -y il

'l/

Let a =1+ ¢,¢>0. The right side will be negative when

eS&FD L <2z'5'

’L

Take »; = (| &3/ 1 &9, then Y\, =1 and the inequality becomes
cxlaomad.
25 0 T al

It is always possible to choose an & so that this inequality holds pro-
vided D is bounded and bounded away from the origin. For let
0<m<= 22 < M, then

1

1
. =
i

IR
TN

k2

and Zl§i.
T Xk m

Take ¢/2 < (m/nM) and the inequality holds.
Let us compute ¢ using the formula in the corollary.

> —6a + 8a® — 4a® + 2a? +2 —2a® + a* + o

q=2 4
1 - w2l
-5 (—4a® + 1?“ — 6a) a’(a — 1) > :
B T; b i
= (a* — 6a® + 1la* — GG)Zi +a¥a — 1)" 3, :
= 2 iF 22k
1

=um4m—mm—m;%+ww—wz

e wwy
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Taking a =1 + ¢

:e(1+e)(1—s)(2—s)z;c1;+52(1+e)22 1

ik xh
which is positive for ¢ < 1 or for ¢ > 2,

THEOREM 3. A fourth order existence theorem.
Let q(x) be a function of the special form (1) and let p(x) be a
continuwously differentiable function such that 0 < p(x) < (1 — &)q(x),

where € > 0 and fized. Let S gt fPde < 0,ge H, and let Au =
D

Sk D¥a,Diw) — pu be a uniformly elliptic operator. That s, a;
1s positive definite and there exist positive constants M and N such
that

law(@) | = M and N3 |&EP = 5_:: au(®)&

for any (¢,8&, ---,&,) and all x @n D. Then the Dirichlet problem
Au = f i D
U =g .
on D

2. Du =3 Dy
has a unique weak solution.

Proof. We must show that there is a function » e H, such that
w — gefoIq and (u, Ap) = (f, @), for every @ in Cy. Set u,=u — g
and consider the equivalent problem of finding uoeI:ofq such that
(uo, Ap) = (f, @) — (9, Ap). Let

B(u, v) = SD Zk ;. DuDv — puvdx

= S > uD¥a,Div — puvdx
D i,k
= (u, Av), for wu,veCy.
We will show that there exist ¢, ¢, > 0 such that

|B(u,v)| = Cif|lull,|lv]l, and Bu,u)=C,|lulf;.
Blu, u) = S S 4y DD, — p |u [ do
D 1,k
> S S 0, DD — q|u | du + eS glulde.
D i,k D

By Corollary 1, both integrals are positive and hence
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(1 + —-2->B(u, w) = S S an DD, + q | u | dz
5 D

z | ASDul + g|ufde
D 1
= const ||w |} .
The positivity of B(u,u) implies that |B(uw, v)? < B(u, u)-B(v, v) so

that we need only show that B(u, u) < const || |2

B(u,u)éMS S | DuDa| + p|ul de

2k

= | S (Dwl + | D) + plufdo

— Jp Gk

= Mu| S Dal+ plulde = M julf.

@

Now extend B(u,v) to all of IOJq by continuity. We can now apply
the Lax-Milgram Theorem which guarantees that any bounded linear

functional F(p) on I%., can be represented as B(u,, ) for some u,e }}q.
Take F(p) = (f, ) — B(g, #). Then

ol = (] o 171d0) ({19 )"
el @llllgll < const |l -

So B(w, ) = (f, ) — B(g, p) as was to be shown. To obtain the
uniqueness result, let Aw = 0, v € H,, then

0 = (u, Au) = B(u, u) = C, ||u |2 Sou=0 a.e.
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