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CONVOLUTION TRANSFORMS WHOSE INVERSION
FUNCTION HAS COMPLEX ROOTS IN A

WIDE ANGLE

ZEEV DITZIAN

In this paper a class of convolution transforms:

(1.1) f(x) = Γ G(x- t)Ψ{t)dt
J—oo

whose kernels G(t) satisfy

(1.2) G(ί) = J ^ p [E(s)]~ι estds

where

(1.3) E(s) = Π (1 - β/ttfc) or E(s) = Π (1 — β/αfc) exp (sRe aζx)
Λ k l

will be treated. Investigation of properties will be carried
for the subclass defined by the restriction on ak as follows:

(a) For some f, 0 < f < π/2

min Inπ — arga k\ ^ f where ak Φ 0 .
«=0,l,2

(b) For some 0 < q < 1

and integer Z | α&+ί | ^ Q'"11 α/c | for all k ^ k0 .

It should be mentioned that the restriction (a) on the argument
of ak is much weaker than those used in other subclasses of convolu-
tion transforms defined by (1.1), (1.2) and (1.3) that were investigated
before.

L I. Hirschman and D. V. Widder [4] treated a class of trans-
forms for which arg ak tend to either 0 or π. J. Dauns and D. V.

Widder [1] and the author [2] studied the case E(s) = Π (1 - s2/α|)
fc = l

for which |argα fc | ^ ψ < ττ/4, that is: The sequence of roots contains
pairs of ak and —α^, A milder way of coupling was introduced by
the author [3]. The question that arises is: Can we relax the re-
striction on the argument of the α '̂s and still have the transforms
and their inversion formulae? Of course it was shown [1, p. 442]
that in some simple cases the analogous inversion formula to that of
Hirschman and Widder does not hold. Examples can be given to show
that in some cases (1.2) does not converge. Here a restriction on the
growth of the roots is given (b) which assures us of the convergence
of (1.2) and helps us to prove that
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(1.4) lim Pm(D)f(x) = Π (1 - ark

ιD)f{x) = φ{x) a.e.
m-+oo k = l

where

dx

We shall assume for convenience that \ak\ ^ \ak+1\ and also that

E(s) = Π (1 — s/ak) since treating E(s) = Π (1 — s/ak) exp (s Re ak

 x)

would mean only shifting the argument t of G(ί) by the number
y t xvβ ak .

It should be noted that the harder part of the proof is an estimate
of E(s) (§ 2) and an estimate on | Gm(t) I = i Pn(D)G(t) | (in § 4) the re-
sults achieved for the later had not been published for the nonvoid
intersection of our class and the class of variation diminishing trans-
forms.

2* An estimate for E(s).

THEOREM 2.1. Suppose that E(s) = Π (1 — s/ak) and the sequence

{ak} satisfies conditions (a) and (b) and let 0 < rj < πβ — ψ, then
there exist A(n) > 0 and B(n) > 0 such that

(2.1) \E{reiθ)\ ^ (A(n) + B(n)r2n)112

for any n and r uniformly for ψ + η<Lθ^π — ψ — η and

Proof. W i t h o u t loss of g e n e r a l i t y w e m a y a s s u m e \ak\ ^ \ak+1\.
We define φk — a r g ak a n d h a v e

11 - reiθ/\ ak \ e^ |2 - 1 - 2-?— cos (θ - φk) +
|α*l

> 1 -
I a * I a k

+ -tr-[1-(1 + τ
(2.2) + [(l + A tan2,)"1 - 2 - ^ cos, + ϊ^cos 2 , ( l + }tan2,)]

Therefore
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Π (1 - re»/ak)
k=i 1 + i

r2n

To complete the proof it is enough to show that there exists a
constant c > 0 independent of r and θ (in its specified angle) such that:

Π (1 - rβ«/αfc) ^ c > 0 .

We shall write

k Π+i = ( j ΐ ; •) (k jff+i- •) ( t = nΠ ) + i •)
= Λ(r) /2(r) 7,(r) .

Choose π^r) as the largest integer satisfying

k ak \ < r/2 cos ^ .

If ^i(r) < ^ + 1 then 7j(r) = 1; otherwise

Π (1-rβ", ^ Π 1 -
2r

cos 77 +

We choose 7i2(r) as n2(r) = min {ϊ: ϊ ^ w + 1,
j α̂  I > 4r cos }̂ and therefore have

cos

\dk

ϊ implise

Using condition (b) and the definition of n2(r) we obtain

- c 1 ( g ) > 0 for 0 < g < 1 .

We shall estimate 72(r) by (2.2) as follows

v
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(if n^r) < n + 1 then instead of n2(r) — nλ(r) — 1 we should write
n2(r) — n — 1). We can estimate n2(r) — nL(r) — 1 from above as fol-
lows; we shall find the smallest m satisfying q~m > 4r cos ηjr{2 cos rj)"1 =
8 cos2)? which we call m0, by (b) ra0 £ > w2(r) — nx{r).

Combining these results

Π {l-reiθlak)

= c > 0

COROLLARY 2.1.a. Under assumptions (a) cmd (b)
function G{t) satisfies

kernel

(3.2)

G(t) e C°°(-oo, oo)

(3.3)

1 = Γe~stG(t)dt

27Γ̂  J-i» J^(s)

REMARK 2.1.b. In Theorem 2.1 it is shown that if (a) and (b)
are satisfied then for 0 < η < π/2 — ψ

(3.4)

for

and C(q,η) does not depend on r or the smallest \ak\.

3* Asymptotic estimate of G(t). Define aL and at by:

^ = max {Re ak, — oo | Re ak < 0} and
(3.1)

a2 = min {Re αΛ, oo | Re ak > 0} .

THEOREM 3.1. Suppose E(s) = Π (1 — s/αfc), ί/̂ β sequence {ak} sat-

isfies conditions (a) <md (b) and let G(t) be defined by (1.2),

( i ) #! = — co implies

G{n)(t) = o(ect) t —• o o

for all c, c < o.
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(ii) aι > — oo implies

σn)(t) = Σ Pι(t) exp (αfc(I)ί) + o(ect) t — oo

where Re αfc(ι) = ^ 1 ^ Z ̂  I<(αfc(i) Φ ak{i) for i φ j and if ak Φ ak{ι)

1 <l ^ L then Re ak Φ aλ) Pt(t) are polynomials of degree μι where
μx + 1 is the multiplicity of ak{l) in {ak} and c < a19

(iii) a2 = oo implies

G{n\t) = o(ect) for all c,c> 0 . t -* ~oo

(iv) ctj. < oo implies

L + M

Gw(t) = Σ Λ(ί) exp (o4 t l )ί) + o(βct) t-+-oo
l = L + l

where R e ak{l) = a2 for L + l ^ i ^ L + Λf, P,( ί ) a r e a s m (b) a^cϊ

c > a2.

Proof. The proof follows the well established method of Hirschman
and Widder [5, p. 108]. In order to use this method it is enough to
show that

\E(σ + iτ)\~ι - 0(|r|-*) | r | - > o o

uniformly for — A ^ σ < A for every finite A. By Theorem 2.1 we
have for |r |/ |<j | > tan(ψ + η) and therefore for | τ | > Ata,n(ψ + η)
(where η > 0 ψ + η < π/2 and ψ is defined in condition (a))

\E(σ + iτ)\~ι ^ (A(w) + B(n)\σ + ir|2 i i)~1 / 2 ^ B(^)~1/21r|— .

4* Gm(t) and properties* Define Gw(ί) by

(4.1) Em(s)~l = (°° e-stGm(t)dt

where

(4.2) #»(«)= Π (1-β/α*).
A = m + 1

By Theorem 2.1 and Corollary 2.1.a we have Gm(t) e C°°( —oo, — oo)
and for m = 0,1, 2,

(4.3) GίΓ>(ί) = - J ^ - | τ ^ d 8

The asymptotic estimates of Theorem 3.1 for Gm(t) that satisfies
condition (a) and (b) will be useful; however the following new esti-
mate will be essential for the proof of the inversion formula.
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THEOREM 4.1. Let conditions (a) and (b) hold and \ak

then

(4.4)

I Gm(t) I ̂  M11 αm+11 exp ( - — cos ψ \ am+1t |

αm+21 exp ( - — cos f | am+2t |) .

Proof. We shall divide the proof of (4.4) into two cases
( I ) \am+2\ ^ 4 |α m + 1 | /cosf
(II) | α m + 2 | ^ 4 |α w + 1 | /cosf.
To show (4.4) in Case I we write dm = 1/2 cos ψ \am+1\ and since

< l̂ m+il cosα/r we have

(4.5)
1 C~dm+io° Pst

2πi J-dm-icoEJs

Using the first integral we have

(4.6) Gm{t)\S^e^\ \Em{d

To estimate Gm(t) we have to estimate Em(dm + iτ)

α»+il
- dm - iτ \ 1 -

= Uτ)

+

(4.7)

= (Reα m + i - dmy\am+i\~2 + (τ - ImαM + ί)
21αm + i |~

!

S - ί cos2 f + (r2 - 2τ Im α r o + i + (Im αM+ί)
2) | α m + ί |

1 + _±_ cot2

8

*m+i

-j-cot2-f] \2 - 2τlmam+i

where A(-f) = 1/8 cos2 ψ and

1 + _L cot2

B(f)τ*\an ι-2

u+t
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Using (4.7) and since | α w + 2 | ^ | α m + 1 |

To estimate I2(τ) we recall from Remark 2.1.b that when dm + iτ = rβ w

and ψ + η ^θ ^2/π or 3π/2 <^θ £2π - f -rj, that is when
| τ | ^ d m t a n ( t + ?), Λ(τ) ^ c > 0.

When \τ\<^dm tan (ψ̂  + oy) we choose n^ ̂  m + 3 such that |an i\ ^
2c?w(l + tan (ψ + η)) and therefore

Uτ) Z { Π γ
U

π (l - — ĝ V
w = 0\ 2 /2

and since by condition (b) nγ — m — 3 is bounded regardless of m

Therefore (4.6) and (4.7) yield

This estimation though correct for all t is valuable only for t ^ 0;
for t ;> 0 we obtain the result taking the second integral of (4.5) into
consideration.

In the Case II, | α w + 2 | > 4|αm+1|/cosψ*, therefore

| R e α m + 1 | ^ | α m + 1 | < — | R e α M + 2 | .

To prove our result for t ^ 0 we use the method of Theorem 3.1
and obtain

(4.8) Gm(t) = am+ι-

when Re am+1 < 0 and

(4.9) Gm(t) = [km+ίo°p

when Reα m + 1 > 0; where km = l/2 |α
Using (4.8) and (4.9) we obtain
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(4.10) \Gm(t) £ \am+1\

Em+1(am+ί) I ̂  Π ( l - fi ( l - ̂ <
0\ 2

Considerations already used in this theorem show that

Since | α m + 1 | £ \am+2\ and |Reα m + 1 - km\ ^ 1/2Λw > | α m + 1 | we have

1 -
km + iτ

1 -
km + ir

Recalling that

Em{km + iτ) - £/m+2(A:w + iτ) ( l - A j t ϊ

the proof of Case II for t ^ 0 follows immediately. The proof when
t ^ 0 is similar taking — km instead of km.

THEOREM 4.2. If conditions (a) αwd (b) are satisfied and \ ak \ ^

(4.4) I G'm(t) I ^ Σ Ni
i

^ + ί |2 exp ( - i - cos

Proof. Since (1 - a^D)Gm{t) - Gm+1(ί) we have

G'm(t) = -α m + 1 G m + 1 ( ί) + |α m + 1 | |G m ( ί ) | .

Using Theorem 4.1 for both m and m i l we obtain

\G'm(t)\ ^ | α m + 1 | | G m + 1 ( ί ) | + \am+1\\Gm(t)\

^ Mx I α m + 1 1 2 exp ( - — cos ψ \ am+1t \j

+ M, I am+111 αm + 21 exp ( -

1 αm+111 αm + 31 exp ( - — cos

— cos ψ | am+2t | J

am+,t | J

which yields (4.4) easily.



COMPLEX ROOTS IN A WIDE ANGLE 493

REMARK 4.1.a. If in Theorems 4.1 and 4.2 the restriction, |α m + 1 | <
L\am\ for some L > 1, is added the proofs become obviously shorter
and involve only the first term (in each theorem).

REMARK 4.1.b. It can be proved that if conditions (a) and (b)
are satisfied and the multiplicity of αm + 1 and αm+2 in {ak} is one then:

(a) \Gm(t)\ ^ A r | α m + 1 | e x p ( - | R e α w + 1 | | ί | )

and

(b) |G'm(ί)| ^K\am+1

+ iV |α m + 1 | |α m + 2 | exp(~ |Reα w + 2 | | ί | ) .

These results are better than those of Theorem 4.1 and 4.2 but
the proof I have uses those theorems. Since Theorems 4.1 and 4.2
are sufficient for the inversion result, I will not prove here these
generalizations.

5* Inversion theorems* The results we shall obtain will cor-
respond to the following two different situations: (1) Both aλ and
a2 are finite. (2) Either aγ or a2 is non finite. (aγ and a2 were
defined in § 3).

THEOREM 5.1. Suppose:
(1) Conditions (a) and (b) are satisfied.

(2) The constants aλ and a2 are finite, I φ(v)dv ^ Ke{a2~ε)t for

t ^ 0 and I φ(v)dv ^ Ke{"ί+t)t for t ^ 0 for some e > 0, and φ(t) e Lx

(A, B) for all A, B satisfying — o o < A < β < o o .
Ch

(3) At a point x I [φ(x + y) — φ(x)]dy = o(h) h—+0. Then
Jo

(5.1) limPm(D)f(x) = φ(x).
m-*oo

Proof. By Theorem 3.1 and assumption 2 we derive the uniform

convergence in an interval a ^ x ^ b of \ G{m)(x — t)φ(t)dt and
J ~-°°

therefore

(5.2) f(x) = I G{n)(x — t)φ(t)dt
dxn J-oo

and

Pm(D)f(x) = Γ Gm(x - t)φ(t)dt .
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S oo

Gm(t)dt = 1 and therefore
- 0 0

Pm(D)f(x) - φ(x)\ = Gm(x - t)[φ{t) - φ(x)]dt

Γx + δ fo

+
Jx-δ Jx

fJx - t)a(t)dt = I, + /2 + I3

S i

[<p(v) — ^ ( a ; ) ] ^ . Using (3) one can
a?

choose δ so that for (x — t) ^ δ \ a(t) | ^ ε | x — t | and therefore

'm(x - t)\\x - t\dt = \G'm(v)\\v\dv

3 fδ

i=ί JO

1
- — cosψ

2

am+i\v)
/

dv

. 2

-f 4 (COS α/r)~2| .

For any fixed δ \ am+i \ exp ( — 1/2 cos ψ \ am+i \ δ) = o(l) m —• oo. Using
( 2 ) \ a ( t ) \ ^ K e l a * - e ) t f o r t ^ O a n d | α ( ί ) | ^ K e { a ^ ε ) t f o r ί ^ O a n d
therefore

S max(a; + δ,O) 3 /I \

Σ N< I α M + i |
2 exp (A. cos f | α m + i | ί )

a +S ί=l \ 2 /

exp ( - i - cos f \am+1\
( ί 0 ) 22

Since lim a;e~α:c = 0 f or a > o we obtain /3 — o(l)m —> oo and simi-
a;-*oo

larly I2 = o(l)m —• oo.

REMARK 5.1.a. Condition (2) can be replaced by a milder condi-
tion (2*) when there are only simple roots on Re z = α^ and Re z = α2.
(2*) I α(t) I ^ Kχ(t)ea^ ΐor ί ^ 0 and | α(ί) | ^ Kχ(t)ea^ for ί ^ 0 where

χ(ί) > 0 and I χ(ί)dί < oo. In the proof the only change is in show-
J-oo

ing the uniform convergence (on a finite interval) of (5.2).
If for some G(t) a, = -oo then for G*(ί), G*(t) = G(-t) a2 = oo

and vice versa. We shall treat therefore such kernels for which
aγ = — oo. For the inversion result we shall need the following lemma.

LEMMA. 5.2. // conditions (a) and (b) are satisfied and a1= — oo,
then G(t) = 0 for t ^ 0.
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Proof. Let [1 — s/α^]"1 = I e~stgi(t)dtf then since Re a{ > 0

J —oo

( a p^i1 t <^ 0

0 O O

Define G*(ί) - gι * ί/2 * * gm(t), it is clear that G*(ί) = 0 for ί > 0
(by induction) and that

G*(t) - P e4f[ (l
2π% J-;~ U = i \ ak

We have, for all m

G(t) - Γ G*(v)Gm(t - v)dv = Γ G*(v)Gm(t - v)dv
J—oo J—oo

|*|Λ( )|* *|flr.(ί)l

ί=i Re α̂

where

[Re α{ exp (Re α<ί) ί < 0
hM = (o f > o

I t is well known t h a t |/^* ••• *ΛW(£)| ^ min Reak (see [5 , p . 138])

and t h a t for m ^> m0 min Re αfc = a2. Therefore for m }> m0

j (l
cos ψ

Since we have

I G(t) I ̂  α 2 (cos f ) - m ( I Gm(t -v)\dv
J

using Theorem 4.1 we obtain for t > 0

Condition (b) implies for every t Φ 0

(cos ψ)-m expί — — cos ψ IαTO+ί111\) = o(l) m —• oo



496 ZEEV DITZIAN

for i = 1, 2, . Therefore G(t) = o(l) m —• co for t > 0 and being
independent of m G(ί) = 0 for t > 0. Since G(ί) G C°°(-oo, oo) G(ί) = 0
for t = 0 also.

THEOREM 5.3. Suppose:
(1) Conditions (a) cmcϊ (b) are satisfied.
(2) ax = — oo, 9>(ί) is defined for t ^ M and φ(t) e LL(M, R) for all

R < oo am? ί* φ(t)dt ^ jg:eίflr2-e)*.

(3) Conditions (3) o/ Theorem 5.1 is satisfied.
Then for x > M

(5.3) limPM(D)/(a;)-^(a;).
m-»oo

Proof. The proof is almost identical to that of Theorem 5.1,
but for the convergence of

ί~ G{n\x - t)φ(t)dt and Γ Gm(α; - t)φ(t)dt
J—oo J—oo

we have to use also Lemma 5.2 (remembering that Gm{t) satisfies also
conditions (a) and (b) and aλ = — oo and therefore Gm(t) = 0 for t ^ 0).
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