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CONVOLUTION TRANSFORMS WHOSE INVERSION
FUNCTION HAS COMPLEX ROOTS IN A
WIDE ANGLE

ZEEV DITZIAN

In this paper a class of convolution transforms:

@ fl) = S"_" Gz — ot
whose kernels G(t) satisfy

1 e -1, pst
1.2) G(t) = %S_iw [E(s)] - e"ds
where

1.3) E(s)= Iﬁ (1—sja) or Es)= lﬁ (1 — sja) exp (sRe az")

will be treated. Investigation of properties will be carried
for the subclass defined by the restriction on a; as follows:
(a) For some 7,0 < ¥ < 7/2

min |nr —arga,| < ¥ where a;,+0.
2

n=0,1,
(b) For some 0 < g <1

and integer ! |ayu| = q'lar] for all k=k,.

It should be mentioned that the restriction (a) on the argument
of a, is much weaker than those used in other subclasses of convolu-
tion transforms defined by (1.1), (1.2) and (1.3) that were investigated
before.

I. I. Hirschman and D.V. Widder [4] treated a class of trans-
forms for which arg a, tend to either 0 or m. J. Dauns and D.V.

oo

Widder [1] and the author [2] studied the case E(s) = I] (1 — s%al)

k=1

for which |arga,| < 4 < 7/4, that is: The sequence of roots contains
pairs of a, and —a,. A milder way of coupling was introduced by
the author [3]. The question that arises is: Can we relax the re-
striction on the argument of the a,’s and still have the transforms
and their inversion formulae? Of course it was shown [1, p. 442]
that in some simple cases the analogous inversion formula to that of
Hirschman and Widder does not hold. Examples can be given to show
that in some cases (1.2) does not converge. Here a restriction on the
growth of the roots is given (b) which assures us of the convergence
of (1.2) and helps us to prove that
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486 ZEEV DITZIAN

1.4) lim P,.(D)f (x) = ﬁ (1 — a;'D)f(2) = p(z) a.e.

m—ro0
where

Dzi.
dx

We shall assume for convenience that |a,| < |a,:,| and also that
E(s) = ﬁ (1 — s/a,) since treating FE(s) = ﬁ 1 — s/a,) exp (s Re a;?)
k=1 k=1

would mean only shifting the argument ¢ of G(t) by the number
> Reai.

It should be noted that the harder part of the proof is an estimate
of E(s) (§2) and an estimate on |G,.(¢t)| = | P.(D)G(t)| (in §4) the re-
sults achieved for the later had not been published for the nonvoid
intersection of our class and the class of variation diminishing trans-
forms.

2. An estimate for E(s).

)

THEOREM 2.1. Suppose that E(s) = [I (1 — s/a,) and the sequence

k=1
{a,} satisfies conditions (a) and (b) and let 0 <9 < w2 — 4, then
there exist A(n) > 0 and B(n) > 0 such that

(2.1) | E(re”)| =z (A(n) + B(n)r*)'"

Jor any n and r uniformly for v+ N=0=7w—+ —7n and
T+ Py +9p=0=2r— —1.

Proof. Without loss of generality we may assume |a,| < |z, ].
We define ¢, = arg a, and have

L= realer =1 -2 s — ) +

| | [?
>1-2" _"i:[ - Lo _l]
=1 21%i cos77+|ak12 1 <1+2tan 7])
1 -t r r? 1
2.2 [1 < tan'y) " — 2 T eos (1 + L tan ]
(2.2) + ( + 5 v/ o] cos7]+|akizcos77 + 21;an 77>
; Tzzsmzng%.__talnz_v_ -;_ Tzzsinzv.
|| 1+Etan277 ||

Therefore
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. ltan27] "
n . 2
II1-refa)| = —
= 1+ —tan’y
2
sin27;>” 2" — A(n) + B.(n)r*
+< 2 ) TaF a0 Bl

To complete the proof it is enough to show that there exists a
constant ¢ > 0 independent of » and # (in its specified angle) such that:

2

I (1 — re’/ay)

n+1

=c>0.

We shall write
o ny(r) na(r) o
= (M) (U ) (L )
k=n+1 k=n+1 k=mnj(r)+1 k=ng(r)+1
= I(r) - Lr) - I(r) .
Choose n,(r) as the largest integer satisfying
k=mn(r), |a|<r/2cosy.

If n(r) <mn + 1 then I(r) = 1; otherwise

ny(r)

2 ny(r) 2
m (1~rei"/ak)| > I (1— 2" cosp 4 >gl

e\ Ta .l

We choose mny(r) as n(r)=min{l:l=n+1, k>1 implise
|a,| > 4r cos 7} and therefore have

I(r) =

Lm= I (1-2_’“_cosr;+ Tz)z I (1—2|’”lcos77).

E=ng(r)+1 [a la,? k=ng(r)+1 a,

Using condition (b) and the definition of m,(r) we obtain
o 1 l
I(r) = 110<1 — ~z.qn> —e(q) >0 for 0<g<1.

We shall estimate I(r) by (2.2) as follows

na(r) 2 2 in2
L = I (1 tan’y 7  sin 77)

k=ny(r)+1 _—2—1 +%tan2” |aklz 2

1 tan2 v ng(r)—~mny(r)—1
(2 1+ %tan2 7))

v



488 ZEEV DITZIAN

(if n(r) <m + 1 then instead of m.,(r) — n,(r) — 1 we should write
ny(r) — n — 1), We can estimate n,(r) — n,(r) — 1 from above as fol-
lows; we shall find the smallest m satisfying ¢=™ > 47 cos p/r(2cos )~ =
8 cos*n which we call m,, by (b) m, : I > n,(r) — n,(r).

Combining these results

0

Il (- revjay)

k=n-+

—2

= I(r) - I(r)L(r)

;ﬁ(l—%q")l- %—%EL“ oo,
v 1+ —tan’y

COROLLARY 2.1l.a. Under assumptions (a) and (b) the kernel
Sunction G(t) satisfies

(3.2) E(s)~ = §°_° e~ G(t)dt
G(t) & C™(— oo, 00) and

w1 [ srestds
(-3) G = 2 S-im E(s)

REMARK 2.1.b. In Theorem 2.1 it is shown that if (a) and (b)
are satisfied then for 0 <7 < @/2 — 4

(3.4) | E(re”)| = C(q, 1)

for
T T 3 T
o -Li< -y~ o /L [ g A
G ‘0 2‘<2 v ”}U{‘9’ 2‘<2 v - 1)
and C(q,n) does not depend on » or the smallest |a,|.

3. Asymptotic estimate of G(t). Define «, and «, by:

a, = max {Rea,, —o|Rea, < 0} and

(3.1) a, = min {Re a,, co|Re a;, > 0} .

THEOREM 3.1. Suppose E(s) = If[l(l — s/a,), the sequence {a,} sat-

1sfies conditions (a) and (b) and let G(t) be defined by (1.2), then:
(i) o, = —oco implies

G'(t) = o(e*) t— oo
for all ¢,c <o.
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(ii) @, > —oo 1mplies

L
G™(t) = X Py(¢) exp (ap)t) + o(e”) t— o0
=1
where Rea,,) = a, 1 £ 1 < L(ag, # Qe for ©# 7 and if a, # ay

11 L then Rea, # a,) P,(t) are polynomials of degree p, where
t + 1 is the multiplicity of a,., in {a,} and ¢ < «,.
(ili) @, = oo 1mplies

G™(t) = o(et) for all ¢c,¢c > 0. t— —oo

(iv) a, < co implies
L+M
G™(t) = ZZL‘, 1Pl(t) exp (a,,t) + o(e) t— —oo
=L+

where Rea,,, =a, for L+ 1=1< L+ M, P(t) are as in (b) and
c > .,

Proof. The proof follows the well established method of Hirschman

and Widder [5, p. 108]. In order to use this method it is enough to
show that

| E(o + 17)[™ = 0(|7|™") |7 — oo

uniformly for —A4 < 0 < A for every finite A. By Theorem 2.1 we
have for |7|/|o| > tan (¢ + 1) and therefore for |7| > Atan (v + %)
(where » > 04 + » < w/2 and + is defined in condition (a))

|E(o + i7)|™ = (A(n) + B(n)|o + it [*)™"* = B(n)™"*|z|™" .

4. G,(t) and properties. Define G,(t) by

(4.1) B (s) = S°_° G (1)dt
where
(4.2) E,(s) = j;[ﬂ(l — slay) .

By Theorem 2.1 and Corollary 2.1.a we have G,(t) € C*(— o0, — o)
and for m =0,1,2, ---

t

n _ -_]:— 300 Snes
(4.3) G(t) 2 S —iwo I,.(8)

ds .

The asymptotic estimates of Theorem 3.1 for G,(t) that satisfies
condition (a) and (b) will be useful; however the following new esti-
mate will be essential for the proof of the inversion formula.
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THEOREM 4.1. Let conditions (a) and (b) hold and |a,| < |y,
then

(Gal®)] < M0 exp (= 2008 ¥ |t
(4.4) 1
+ M;|a,:| €Xp ("‘ ?COS P Iam+2t|> .

Proof. We shall divide the proof of (4.4) into two cases

(1) |@nie] = 4|@piil/cos 4

(ID)  |@pse| = 4|@psl/cos .

To show (4.4) in Case I we write d, = 1/2cos 4 |a,.,| and since
dn < |@nsi| cos ¥ we have

(4.5) Ga(t) = ds .

1 Sdmww et d 1 S—dm+i°° et

S =
275 Jap—i w(S) 271 J—dm—io B, (8)

Using the first integral we have
(4.6) 1Ga(t)] < %edmtDEm(dm +it)|dr
To estimate G,(t) we have to estimate E,(d, + 7)
\Bo(dy + 37| = 11— |tpys — dp — 37| - [T |1 — =TT

1= 1| m+1,| k=m+3 a;

= Ii(7) - Ii(7)

Iam+i|_2lam+i - dm - 'I:T|2
= Reapsi — )’ |@psi|7 + (T — IM @psi)* | @msi|

@D = eosty + (@ = 20 ImGus + (00 Gusd)) [ascl
= Leosty + L —CFV g, -
8 8 1+ 1 cot? 4
8
+ <[ % q/r] 2 —2tIma,.;
1 2 -2 2 -2
( =+ ) cot >(Im Qo t4) >|a’m+l| = A(Y) + B(¥)T | @i
where A(y) = 1/8 cos® ¢ and
B cot? 4
(¥) = 8 T Lop
+ —8— cot ’l/f
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Using (4.7) and since |@,is| = |@psy]

I(7) Z {A(¥)* + 2A(9)B(¥) | @272 + BO)* | Qo2
= k(1 + 7 ann ™) .

To estimate I,(r) we recall from Remark 2.1.b that when d,, + it = re®’
and Yy +79<60=<2/r or 3m/2<60=<2r—+ —7, that is when
]| = d,tan (v + %), I(z) = ¢ > 0.

When |7| < d,, tan (v + ) we choose n, = m + 3 such that |a, | =
2d,(1 + tan (v + 7)) and therefore

L) = {,,jlﬁ“”}é ; ﬁ <1 _ d.(1 4+ tan (v + 77)))

=nr1+l la

= Ay T (1 - éq)

and since by condition (b) n, — m — 3 is bounded regardless of m
L(7) = c.
Therefore (4.6) and (4.7) yield
1Gu®)] < Cootnt | [+ a1 de

= M|a,..| exp (% COS Y [ @ | t) .

This estimation though correct for all ¢ is valuable only for ¢ < 0;
for ¢t = 0 we obtain the result taking the second integral of (4.5) into
consideration.

In the Case II, |@niz] > 4| @y, |/cOs +r, therefore

IRe tpsi| < |Gnsa] < %|Ream+2| .

To prove our result for ¢t <0 we use the method of Theorem 3.1
and obtain

Q418 gy t+ic0 atds
(4.8) Golt) = @piy =20 4 § e
P iy Vem—in B(s)

when Rea,., < 0 and

(4.9) Gm(t) _ Skm+i°0 estds

Fem—ioo m(s)

when Rea,., > 0; where k, = 1/2|a,,..| CO8 4.
Using (4.8) and (4.9) we obtain
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(4.10) 1G(t) < |@ps| » Lt ekm‘r (B (k. + i7)]"dr
Em+1(a’m+1) —®
I | Dms r _ l n \1
Bunons)| 2 (1~ [2222) 2 [ (1 - 30°) -

Considerations already used in this theorem show that
IEm+2(km + ’LT)[ % C > 0 .
Since lam+1| é [a’m+2l and IRe Amtr — kml g 1/2km > !am+1| we have

1 — kwtiz

oty

Z (A() + B(¥)7* [@a[7)

_’1__ k., + it

a’m+2

Recalling that

Bk + i7) = Eppo(kn + i7) - (1 _ kntit )(1 k4T )

Qt1 Q2

the proof of Case II for ¢ < 0 follows immediately. The proof when
t = 0 is similar taking —Fk, instead of k..

THEOREM 4.2. If conditions (a) and (b) are satisfied and |a,| <
|@rs1], then )

(8 GO = X Nilapnl exp (— 2cos v anit])

Proof. Since (1 — a;'D)G,.(t) = G.+.(t) we have
Gfm(t) = _a’m+1Gm+1(t) + |a’m+1“Gm(t)| A
Using Theorem 4.1 for both m and m + 1 we obtain

[Gr(t)| = |Cnril| Guii@®) | + | Cmsr || Gu(D) |

= M, |G exp (— <008 v |t ])

1
+ M, sl €30 (— 5 €08 |Gt )
M, |G s €xD (= 2008 ¥ |t )
+ Mz |am+1||a’m+3| eXp <_ %COS "/’ |a’m+3t i)

which yields (4.4) easily.
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REMARK 4.l.a. If in Theorems 4.1 and 4.2 the restriction, |a,.,| <
Lja,| for some L > 1, is added the proofs become obviously shorter
and involve only the first term (in each theorem).

REMARK 4.1.b. It can be proved that if conditions (a) and (b)
are satisfied and the multiplicity of a@,., and a,,, in {a,} is one then:

(a) |Gu(t)| = M|a,y,| exp (—|Rea,,|[t])
and
(b) |Gh®)| = Kl|ap.|"exp (— |[Re a,i|t])
+ N|ayii||@nis] XD (— |Re @, E])

These results are better than those of Theorem 4.1 and 4.2 but
the proof I have uses those theorems. Since Theorems 4.1 and 4.2
are sufficient for the inversion result, I will not prove here these
generalizations.

5. Inversion theorems. The results we shall obtain will cor-
respond to the following two different situations: (1) Both «, and
a, are finite. (2) Either a, or «, is non finite. (o, and a, were
defined in § 3).

THEOREM 5.1. Suppose:
(1) Conditions (a) and (b) are satisfied.

t
(2) The constants a, and a, are finite, ‘S go(v)dv’ = Ke'*=9' for
0

t=0 and ISoqa(v)dv. = Ke“1t9 for t <0 for some € >0, and ¢(t) e L,
t
(4, B) for all A, B satisfying —oo < A < B < oo.
k
3) At a point x SO [p(@ + ¥) — p@)]dy = o(h) h— 0. Then

(5.1) lim P,(D)f (%) = ¢() .

Proof. By Theorem 3.1 and assumption 2 we derive the uniform

—o0

convergence in an interval a < x <b of Sw G™(x — t)p(t)dt and
therefore

(5.2) L f@ =" 6@ - et
da —o

and

PuD)F@) = | Gulw — tip(®)dt .
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To complete the proof we remember that S G.(t)dt = 1 and therefore

PuDIF (@) = ple)| = ||”_Gulo = Dlp(t) — ol

_ HSH n S“” + Si}(;;ﬂ(x - t)a(t)dtl =L+ 1+

—o3 x—0

t
z

choose 6 so that for (x — ¢) <0 |a(t)| < e]x — t| and therefore

where a(t) is given by a(t) = S [p(v) — p(x)]dv. Using (3) one can

Lise| 6w = oo — tiat = [ |G v]dv

IA

£2 3, N;lapilt - || vexp (= 2 cos y [aneil 0)do
i=1 0
< €233 Ni{ (@il exp (— €08 9 (2] 3) - 2 - (co8 9

+ 4 (cos ’Ilf)—z} .

For any fixed 6 |@ny;| €XDP(—1/2c0S Y |Qpeil 0) = 0(1) m — oo, Using
(2) |a@t)| < Ke* " for t =0 and |a(t)| < Ke+t for t <0 and
therefore

max(z+4,0) 3

2 Ni|an| exp (% COS Y | @t t)
=1

x40 %

|ISI < Ke(a1+6)(z+5)8

3 oo
+ Z KN, Iamﬂ. |2 S exp (— l coSs lam+1| t)e(az—s)tdt .
max(z+8,0) 2

i=1

Since lim ze=** = 0 for ¢ > o we obtain I, = o(1)m — « and simi-

L0

larly I, = o(1)m — oo,

REMARK 5.1.a. Condition (2) can be replaced by a milder condi-
tion (2*) when there are only simple roots on Rez = &, and Rez = a,.
(2%) |a(t)] £ Kx(t)e for t < 0 and |a(t)| < Ky(t)ex* for ¢ = 0 where
x(t) > 0 and Sm x(t)dt < co. In the proof the only change is in show-
ing the uniform convergence (on a finite interval) of (5.2).

If for some G(t) &, = —oo then for G*(t), G*(t) = G(—t) a, = o
and vice versa. We shall treat therefore such kernels for which
&, = —oco, For the inversion result we shall need the following lemma.,

LeEMMA. 5.2. If conditions (a) and (b) are satisfied and o, = — oo,
then G(t) = 0 for t = 0.
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Proof. Let [L — sja;]" = r ¢-*g,(t)d¢, then since Rea; > 0

ae*’ t<0

9:(t) = {0 £ 0

Define Gx(t) = g, x g, * ++* * g,.(t), it is clear that GZ(f) =0 for £t >0
(by induection) and that

Gt = _1_8"" e[,ﬁ (1 _ i)]_‘ds .

271 J—iw

We have, for all m

G(t) = S:G,*;(U)Gm(t — v)dy = S;G:;(v)Gm(t — v)dv

[Ga@®)] = 19:() [*[g2( ) [* =+ x| ga(D)]
7

=1;[1-—Cz—fc-i—kl*---*hm(t)

Re
where
hit) = {Re a; exp (Re a;t) t<O0 .
0 t>0

It is well known that |A,* --- % h,(t)] £ min Rea, (see [5, p. 138])
1<k=m

and that for m = m, min Rea, = a,. Therefore for m = m,
1<k=m

|GR(D)] =
c

Sm

“Zw (la:| < (cos y)~*|Re a;]) .

Since we have

60| S @ (cos )| _|Gult = v)|dv
= aycos )" - | 1Gu(0) | do
using Theorem 4.1 we obtain for ¢ > 0
. . 1
|G(8)] = aufeos ¥)~ - 2cos y)~{ Mrexp (= 5-cos ¥ [ausllt])

+ Myexp(— +eosy|anulltl) ]
2
Condition (b) implies for every ¢ + 0

(cos )™ exp (- %cos«/r amillt]) = o) m— oo
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for 1 =1,2,.... Therefore G(t) = o(1) m — co for ¢ > 0 and being
independent of m G(t) = 0 for ¢t > 0. Since G(t) € C*(— o0, x0) G(t) = 0
for ¢t = 0 also.

THEOREM 5.3. Suppose:
(1) Conditions (a) and (b) are satisfied.
(2) a, = —oco, p(t) is defined for t = M and ¢(t) e L(M, R) for all
R < o and S p(t)dt < K oo,
M

(8) Conditions (3) of Theorem 5.1 is satisfied.
Then for x > M

(5.3) lim P(D)f (x) = @(2) .

Proof. The proof is almost identical to that of Theorem 5.1,
but for the convergence of

glG‘”’(x—typ(t)dt and S”

_Ga(w — Hp(t)dt

we have to use also Lemma 5.2 (remembering that G,(t) satisfies also
conditions (a) and (b) and «, = —oco and therefore G, (t) = 0 for ¢ = 0).
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