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FIXED-POINT-FREE OPERATOR GROUPS OF ORDER 8

FLETCHER GROSS

Let A be a group of order 2" which acts as a fixed-point-
free group of operators on the finite solvable group G. If no
additional assumptions are made concerning G, then ‘‘reason-
able’’ upper bounds on the nilpotent length, I(G), of G have
been obtained only when A is cyclic [Gress] or elementary abelian
[Shult], As a small step in extending the class of 2-groups A
for which such bounds exist, it is shown in the present paper
that if |A| =28, then I(G) <3 if A is elementary abelian or
quaternion and I(G) £ 4 otherwise.

Unfortunately, the author was unable to generalize his methods
of proof to a wider class of groups.

The notation used in this paper agrees with that of [1] with two
additions: (1) If G is a linear group operating on V and U is a G-in-
variant subspace, then {G| U} denotes the restriction of G to U; and
2) Fy(G) =1 and F,.(G)/F,(G) is the greatest normal nilpotent sub-
group of G/F,(G).

THEOREM 1. Let G = NQ be a finite solvable linear group over
a field K whose characteristic 1s not 2 and does mot divide | Fy(N)].
Assume that N s a normal 2-complement of G and Q is a group of
order 8 containing an element x of order 4. If, in addition, C(Q) =1
and >,.09 = 0, then it must must follow that

[xzy FZ(-N)/FI(-N)] =1.

Proof. According to the hypothesis @ can be any group of order
8 except an elementary abelian group. If @ is cyclie, this theorem is
a special case of [4, Th. 1.2], and if @ is a guaternion group, then a
stronger result is possible. Thus the main interest in the theorem is
when Q is either dihedral or is the direct product of cyclic groups of
orders 4 and 2.

To prove the theorem we first notice that extending K affects
neither hypothesis or conclusion. Thus we may as well assume that
K is algebraically closed. We now assure that G is a minimal counter-
example to the theorem and let V be the space on which G operates.

Choose S to be a subgroup of F,(N) such that @ normalizes S,
[#% S] £ Fy(N), and S is minimal with respect to the above properties.
S must be a p-group for some prime p. Now € normalizes [+% S], and
[«% [2% S]] = [«% S] [2]. Due to the minimality of S, this implies
that [2% S]= S.
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Now Cy(0,.(F(N))) = SN F(N). Thus there is an r-group R for
some prime 7 = p such that @S normalizes R, R < F\(N),[S, R] =1,
and R is minimal with respect to the above properties. R must be a
special #-group, and R/R’ must be transformed irreducibly by @S.

Since the characteristic of K does not divide |F\(N)|[, V is a
completely reducible K — R module. From this and the fact that
[S, R] <t @SR, it follows that V contains a maximal K — QSR sub-
module M such that [S, R] is not the identity on V/M. Now let H be
the kernel of the representation of QSR afforded by V/M.

Since <{x)> must be faithfully represented on V/M, we have that
either QN H =1 or Q/Q N H is cyclic of order 4. But @ has no non-
zero fixed vector in V and so certainly has none in V/M. Thus if
Q/Q N H is cyclic of order 4, then it follows from [4] that [2% S, R] = 1.
Hence we must have @ N H = 1. This implies that QSR/H acting as
a linear group on V/M satisfies the hypothesis but not the conclusion of
the theorem. Therefore, in proving the theorem we may as well as-
sume that G = QSR and that V is an irreducible KX — G module.

Clifford’s theorem now implies that V is a completely reducible
K — SR module and V=V, V,PH --- BV, where the V; are the
homogeneous K — SR modules. @ must permute the V,; transitively,
and, since [S, R] < QSR, it must be that {[S, R]|V} = 1 for all 1.

We now proceed to prove that ¢ = 1, or, in other words, that V'
is a homogeneous K — SR module. For this purpose let

Q:=1{9lgeQ, Vg ="V}
and

C:={9l9eQ;{lg, SR]| Vi = 1}.

Then Q; and @, as well as C; and C; are conjugate in @ for all 7 and j.
[Q: Q] =t, V; is an irreducible K — Q,SE module, and {3,.,,0|V;} = 0
for all 7. The last fact implies that @; == 1. Since {[«* S]]V} # 1,
2* cannot belong to C,.

LEMMA. C, =1 for all 7.

Proof. Suppose C; = 1. Since <z>N C; =1, it follows that C; is
cyelic of order 2 generated by an element y;. Now Cps(x) is normalized
by Q. It follows from this and the fact that conjugation by x transi-
tively permutes the y; that [u, y;] = [u, ;] for all ¢ and 7 and all
u € Cps(x). Since [u, y;] is represented by the identity on V;, this all
implies that [Crs(x), ¥;] = 1 for all 7. Since z and y; generate @, we
obtain that Cps(x) = Crs(Q) = 1. Hence x acts as a fixed-point-free
automorphism on RS. From this follows [¢* S, R] =1 [3] which is
a contradiction.
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LEMMA. Q;,=Q and t = 1.

Proof. If Q; is elementary abelian, it follows from [7, Th. 4.1]
that C, = 1. Thus, since @, = 1, we must have either Q, = Q or @,
is cyclic of order 4 generated by an element y. If @, is cyclic of
order 4 we must have y* = 2* because @ only has 8 elements. Now
@; can have no nonzero fixed vector in V,. Theorem 1.2 of [4] now
vields that [x?, S, R] is represented by the identity on V,. Since
this is impossible, @; must be Q. Then t =[Q:Q;] =1 andso V is a
homogeneous K — SR module.

COROLLARY. Z(SR) =R’ = 1.

Proof. Z(SR) is represented by scalar matrices and so @ must
centralize Z(SR). Thus Z(SR) < C,s(Q) = 1. Now R’ is normalized
by QS and so, due to the minimality of R, we must have [S, R’] = 1.
Therefore R’ < Z(SR).

Now let V=UPU,DB --- P U, where the U; are the homogene-
ous K — R submodules of V. Let H; ={9|ge®QS, U,g= U}and S; =
H;NS. Now SQ must permute the U, transitively since V is an ir-
reducible K — QSR module. Thus s = [QS: H;] for all 7. But V is
a homogeneous K — SR module. This implies that (U, S)Q = U,S.
Hence U;S =V for all ¢. Therefore s =[S:S;] = [@S: H;] which
means that H; must contain a Sylow 2-subgroup of SQ. Since the H;
are all conjugate in @S, this implies that @ < H; for some 4,7 =1
say. Then @ fixes U,. Let R, be the kernel of the representation of
R afforded by U,. Clearly R, is normalized by Q. But R is abelian
and so R is represented by scalar matrices on U,. It now follows
that [R/R,, @] = 1. Since C,(Q) = 1, this implies that B, = R. But,
since V is an irreducible K — QSR module and R <] QSR, this is im-
possible. This contradiction proves the theorem.

THEOREM 2. Let G = NQ be a finite solvable linear group over a
field K whose characteristic does not divide | F(N)|. Assume that N is
a normal 2-complement of G and @ is an ordinary quaternion group.
If, in addition, Cy(Q) =1 and 3,.,9 = 0, then it must follow that
[Q, Fi(N)] = 1. '

Proof. Extending K affects neither hypothesis nor conclusion.
Thus we assume that K is algebraically closed. If [Q', F.(N)] #= 1,
then there is a subgroup P of F(N) such that @ normalizes P, Q'
does not centralize P, and P is minimal with respect to the above
properties. Then P is a special p-group for some prime p and P/P’
is transformed faithfully and irreducibly by @. This implies that
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| P/P’| = p* and so P is either elementary abelian of order p* or extra-
special of order »* and exponent p.
If V is the vector space on which G operates, then

V=V.®oV.D:---

where the V; are the homogeneous K — P modules. By renumbering,
we may assume that [Q’, P] is not the identity on V,. Now if @, as
a permutation group on the V;, had an orbit of length 8, then 3 ., ¢
would not be 0. This implies that Q" must fix V..

If {P|V} is abelian, then P is represented by scalar matrices on
V. and so we would have {[Q’, P]|V,} = 1. Thus {P|V} is not abelian.
This implies that P = {P|V,} = an extra-special p-group of order p*
and exponent p.

Now let H={g|geQ, Vg =V,}. In order that >,.,9 =0, we
must have {3,., 9|V} = 0. Now a faithful irreducible K-represen-
tation of P is uniquely determined by the representation of P’ [6].
It follows from this that H = Cy(P’). Since Cp(Q) =1, H =+ P. But
the automorphism group of P’ is cyclic. Thus Q/H is cyclic. This
implies that H is cyclic of order 4. Let & generate H and let y be
an element of @ not contained in H.

Case 1. p = 1(mod 4).

Suppose first that char (K) == 2. Then Theorem 3.1 of [7] implies
that {[«* P]|V.} = 1, which is a contradiction. If char (K) = 2, then
Theorem B of [6] leads to {«* + «*+ & + 1|V} = 0, also a contra-
diction.

Case 2. p = 3 (mod 4).

In this case GF(p) does not contain a primitive 4th root of unity.
Since @ faithfully transforms P/P’, it follows that there elements a,
b generating P such that

a’ =b,b" =a ' (mod P’) .
But this implies that [a, b)’ = [b, a™'] = [a, b], contrary to y e Cy(P’).

THEOREM 3. Let @ be a group of order 8 which acts as a fived-
point-free group of automorphisms of the finite group G. Then
G 1s solvable and UG) <3 if Q is either elementary abelian or a
quaternion group and WG) < 4 otherwise. The upper bound in the
case when Q 1is elementary abelian or a quaternion group 1is best-
possible.

Proof. If G admits a 2-group as a fixed-point-free operator group,
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then G must have odd order and so G must be solvable from the
Feit-Thompson Theorem [1]. If Q@ is elementary abelian, the result
follows from Thorem 4.3 of |7]. Therefore assume that @ has an
elemen « of order 4. We now use induction on |[G|.

If H, H, are distinct minimal Q-admissible normal subgroups, then
UG) £ l[(G/H) x (G/H,)] = Max {{(G/H,), l(G/H,)}. Thus in proving the
theorem we may assume that G has only one minimal Q-admissible
normal subgroup. Hence F\(G) is a p-group for some prime p. Now
let N = G/F,(G) and consider NQ as a linear group acting on V where
V is F\(G)/D(F(G)) written additively. Theorems 1 and 2 imply that
[¢), F.(N)/F,_(N)] =1 where k=1 if Q is a quaternion group and
k = 2 otherwise. It follows from this that |2° N/F,_(N)] =1. But
then N/F,_(N) admits a fixed-point-free operator group of order 4.
This implies that I(N/F,_,(N)) < 2. We now have that

UG) =1+ UN)=1+(k—1) + UN/F,(N)) =k + 2.

Finally, the claim of best-possible in the statement of the theorem is
justified by [5].
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