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HOMEOMORPHISM GROUPS OF DENDRONS

BEVERLY L. BRECHNER

Professor J, Dugundji has asked the following question,
Is the space of homeomorphisms of a contractible, locally
contractible, space necessarily locally contractible? In this
paper we answer the question in the negative by showing that
the spaces of homeomorphisms of certain dendrons are not
locally contractible, Specifically, we will show that any
‘‘special”’ dendron (see Definition 2.3) has a zero dimensional,
non-discrete, group of homeomorphisms.

Conventions and notation. If X is a metric continuum, G(X) will
denote the group of all homeomorphisms of X, with the following
metric topology:

(g, ) = lub {d(g(@), @)} -

The double arrow in f: A—» B means onto.

By a dendron is meant a locally connected metric continuum con-
taining no simple closed curves.

See [3] and [4] for further discussion of dendrons.

2. Homeomorphisms between similar dendrons.

DEFINITION 2.1. A set B is an order basis for a dendron D if
and only if every point 2z of D has arbitrarily small neighborhoods
U,, with boundaries in B, such that the number of points on Bd U,
is less than or equal to the order of x {3, p. 277].

DEFINITION 2.2. Let D be a dendron, B an order basis for D.
Let o7 W, -+-, W, be a cover of D of mesh < ¢ with the following
properties for each 4:

(1) W, is a continuum which is the closure of an open set,

(2) Bd W, is a finite subset of B, and

(3) wW.nw; =Bd W,nBd W; for each j = 1.

Then 27 is called a regular e-cover with respect to B.

DEeFINITION 2.3. Let S be a nonempty set, finite or infinite, of
positive integers greater than or equal to three. Let < be the class
of all dendrons with a dense set of cut points of order =, for each
ne S, and no cut points of order £ >3, if k¢ S. An element of <
for any such S is called a special dendron. Two special dendrons D,
and D, are called similar if and only if there exists a class & to
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which they both belong.

LEmMMA 2.1. Let D be a dendron and let B be an order basis
Sfor D containing all the cut points of order greater than or equal.
to three. Then for each ¢ > 0, there exists a regular e-cover with
respect to B.

Proof. See Lemma 4.1 of [2].

LEMMA 2.2. Let X and Y be dendrons and let ¢;,— 0. Let {Z/}r,
and {7;}z, be sequences of closed covers of X and Y respectively,
such that

(1) Z, s a regular &;-cover of X,

(2) & is a regular &-cover of Y,

(38) iy, 18 a refinement of Z;; Ziv 18 a refinement of %7,

(4) 2, and 777 have the same number of elements,

(5) The elements of Z; and 777 can be so named that U,NU;,#p
if and only if Vi,NV,, * o,

(6) Ui & Uiy of and only if Vi ; S Vi
Then X and Y are homeomorphic.

Proof. Let xze X. Then there exists a tower of sets {U,;}i,
such that « = N, U;,;,. Let h(x) = N, V,,;,. It may be shown,
by a standard argument, that h(x) is well-defined, and is a homeo-
morphism of X onto Y. (See, for example, Theorem 11 of [1].)

LEMMA 2.83. Let D be a dendron and let z: U, U, -+-, U, be a
regular e-cover. Let P be the set of points of intersection of the
various elements of the cover; that is, pe P if and only if there
exist t,5 such that U;NU; = p. Then the elements of P can be so
named that D — {p,} has exactly one component which meets P — {p},
if this set is mot empty.

Proof. Let p] be any element of P. If there exist at least two
components of D — {p{} which contain elements of P — {p;}, let V, be
one of these components, and consider the points of P in V,. Let p!
be any such point of P. Now consider D — {p;}. One component of
this set contains p]. If no other components contain points of P, then
let p, = p, and we are through. If there are other components con-
taining points of P, let V, be such a component. We note that
p.¢ V,. Let p; be any element of P in V,. Consider D — {p}}. We
note that p{ and p; are in the same component of this set, since p)
separates p] from p,. If this is the only component containing points
of P, let p} = p,, and we are through. If there are other components
containing points of P, we continue the above process. This process
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can be continued only a finite number of times, since P is finite.
Therefore, at the last stage we have the required p,.

LEMMA 2.4. Let X and Y be similar dendrons, and let ¢ > 0.
Let A and B be order bases for X and Y respectively, each contain-
ing all the cut points of order greater than or equal to three. Then
X and Y admit regular e-covers Zz and %~ with respect to A and
B respectively, such that:

(1) Z and ¥ have the same number of elements, and

(2) the elements of Z and 7" can be so named that U, N U; # ¢
if and only of V,NV; = ¢.

Proof. Let ' U!, U], ---, U be a regular e-cover of X with
respect to A. We may assume, without loss of generality, that the
interiors of the elements of Zr' are connected. Let y, be an endpoint
of Y, and let W, be a connected neighborhood of v, of diameter less
than . Let y, be a point of order two in W, Then y, is a point
of order two in Y, and one of the two components of Y — {y,} is of
diameter less than ¢. Call this component W,. Let W be the other.

We will put a copy of %’ in W, and a copy of a refinement of
W/ in an appropriate element of %’ to obtain the isomorphic covers
7z and ¥~ of the theorem. We do this in the following way. Let
P be the set of points of X which are points of intersection of the
elements of Z/’; that is, pe P if and only if there exists U!/ and U/
such that U/ N U, = p. By Lemma 2.3, there exists p, € P such that
X — {p} contains exactly one component meeting P — {p,}. Let k, be
the order of p,. Let ¢, be a point of W, of order k,. There are
(n, — 1) components of X — {p,} which do not contain elements of
P — {p}. Let ¢, assign the closures of these in any one-to-one manner
to the closures of the (n, — 1) components of W, — {¢,} which do not
contain y,. Let O, and O{ be the remaining components of X — {p,}
and W, — {q,} respectively, and let ¢, assign O, to O].

We next break up O] to match O,. O, is a dendron containing
p, as an endpoint, and O] is a dendron containing ¢, as an endpoint.
O, already has inherited a regular ¢-cover by elements of %’. By
Lemma 2.3, there exists p,e P such that O, — {p,} has exactly one
component which contains points of P — {p, p,}, if this set is not
empty. Let k, be the order of p,. Let g, be a point of O] of order
k,. Exactly one component of O, — {p,} contains p,. Let @, assign
this component to the component of O] — {¢,} which contains ¢q,. Let
@, map the closures of the other components arbitrarily in a one-to-
one manner to the closures of the components of O] — {g.} which do
not contain ¢,, We will call the component of O, — {p,} which con-
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tains points of P — {p,, p,} by the name O,, and we will call ¢,(0,) by
the name O;.

We note that O, has at most two boundary points in P, We next
break up O, By Lemma 2.3, there exists p,e€ O, such that O, — {ps}
has exactly one component which meets P — {p,, p,, »;}, if this set is
not empty. Let %k, be the order of p,. We choose a point ¢, in O
such that (1) the order of g, is k., and (2) ¢; separates ¢; from ¢, if
and only if p, separates p; from p,, ¢,7,k =1,2,3. In case p; does
not separate p; from p,, 1,7, k = 1,2, 3, let A, be the unique arc from
p, to p,, and let A] be the unique arc from p, to A,. Let k} be the
order of point 4, N A]. In this case, we additionally require that ¢,
have the corresponding property; that is, if B, is the arc from ¢, to
¢, and B! is the arc from ¢, to B, then the order of the point B, N B;
is also %,. Now O, — {p,} has exactly one component which meets
P — {p,, p, p}, if this set is not empty. Look at the boundary points
of this component, and let ¢, take this component to the component
of O} — {q,;} with the corresponding boundary points. Let ¢, map the
closures of the remaining components arbitrarily to the closures of
the remaining components of O — {¢.,}, except that if one of the
components of O, — {p,} has p, (or p,) as an additional boundary point,
let ¢, take the closure of this component to the closure of the com-
ponent of O, — {g;} with ¢, (or ¢.,) as an additional boundary point.

We continue this process inductively, choosing ¢, so that ¢, sepa-
rates ¢; from ¢;, (¢,5 <), if and only if p, separates p; from p,.
Further, we ask that if the component of X — {p,, »,, ---,p,_,} which
contains p, has p; (¢ < m) as a boundary point, then the component
of W, —{q,, ¢+ +* ¢,_.} Which contains ¢, has ¢; as a boundary point.
We also require that the order of ¢, equal the order of p,. In case
p,. does not separate any pair pp;,, 1 =<1,5<n — 1, let A, be the
union of the arcs joining the pairs of points p;, p; for 1 < 4,7 <n — 1.
Let A’ be the arc joining p, to A,. Let the order of the point
A, N A, be k,. In this case we additionally require that ¢, have the
corresponding property; that is, if B, is the union of the arcs joining
g;and ¢;, 1 < 4,5 <n —1,and if B} is the arc from ¢, to B,. Then
(2) the order of the point B, N B, is k,, and (b) A, and B/ are iso-
morphic trees, the isomorphism determined by p; —gq;. We define ¢,
from the set of closures of components of O, , — {p,} to the set of
closures of components of O),_, — {g,} so that if ¢,(0) = 0’ and p, is
a boundary point of O, then g¢; is a boundary point of O’.

After a finite number of steps, we use the last p; in P. Let ¢
be the one-to-one function determined by ¢, @, ---, @,, where k is
the number of points in P, and ¢(U’) = ¢,(U’) for some j such that
U’ contains no points of P in the jth step of the above process, and

where U'e Z/'.
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Let o(U!) = V! in W,, and call this cover of W, by the name
%', Let V! be the element of %' which contains y,. Consider
@ (V) = U!. If U! is an ‘“‘end element’’ of 7', that is, the boundary
of U! contains exactly one point in P, let x, be any point of order
two in U/, and let W/ be the component of X — {x,} which does not
contain the points of P.

If U! is not an end element, let @ = {q;| ¢; corresponds to p; in
P}, and let B the finite tree which is the union of arcs joining the
points of @ on the boundary of V!, and let B’ be the arc joining ¥,
to B. Let y = BN B’ and let & be the order of y. Note that k& = 3.
Now let A be the finite tree which is the union of the arcs joining
the points of P on the boundary of U/. A is isomorphic to B. Choose
a point x e A, of order k, such that x separates p; from p; in A if
and only if y separates ¢; from ¢; in B. Let x, be any point of order
2 of a component of A — {x} whose only boundary point is x. Let

/" be the component of X — {x,} which does not contain points of P.

Now let &’ be a regular c-cover of W,. Let &’ be a copy of
&' in W), using the same procedure as above, and making sure in
the first step that the component in W, which contains y, corresponds
to the component in W,” which contains z,, &’ is obtained in a
finite number of steps. Let +r: &' —-» &" be the one-to-one function
obtained.

The subdivisions % and 2" of X and Y obtained in this manner
are regular e-covers of X and Y respectively, and are isomorphic; that
is, there is a one-to-one function f:Z —» ¥~ such that U, N U; # ¢
if and only if f(U;) N f(U;) # @. This completes the proof.

THEOREM 2.1. Let X and Y be two similar dendrons containing
endpoints {a, b} and {c, d} respectively. Then there exists a homeo-
morphism h, h: X-» Y such that h(a) = ¢ and h(b) = d.

Proof. Let ¢ > 0. We show that there exist regular s-covers
7 and 7~ for X and Y respectively, and a one-to-one function ¢
from 77 onto 7" such that (1) U;N U; # ¢ if and only if

o(U) NoU;) # @,

and (2) ¢ takes the element of %/ containing ‘‘a”’ to the element of
%" containing ‘‘c,”” and the element of % containing “‘b’’ to the
element of 27" containing ‘‘d.”’

Let x, be a point of order two separating a from b in X, and
let A, and B, be the two components of X — {x;}. Let y, be a point
of order two separating ¢ from d in Y, and let C, and D, be the two
components of Y — {y,}. Let %’ be a regular ¢-cover of X which is
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the union of a regular e-cover of A, and a regular e-cover of B,. Let
2~ be a regular e-cover of Y such that "’ is the union of a regular
e-cover of C, and a regular e-cover of D, and such that there exists
a one-to-one function ¢: %’ — ¥, constructed with care as in Lemma
2.4, so that:

(1) o takes each element containing x;, to an element contain-
ing y;

(2) o takes each element which is a subset of A, to an element
which is a subset of C,, and each element which is a subset of B,
to an element which is a subset of D,, and

(8) o takes the element containing ‘‘a’’ to the element containing
“‘c,”” and the element containing ‘‘b’’ to the element containing ‘‘d.”’

Now let ¢;,— 0. For each ¢; we construct isomorphic covers %;
and %/ with properties of Z and " above, and such that (1) %; is
a refinement of Z/;_, and %7 is a refinement of %/, and (2) U,; &
U, if and only if V;;SV,_,,. Clearly this may be done by using
the care used in the construction of the isomorphic covers of Lemma
2.4, and applying this to each element of Z/_,, when constructing %;.
Then it follows from Lemma 2.2 that there is a homeomorphism #,
h: X - Y such that h(a) = b and h(c) = d.

3. The main theorem. In this section we show that the space
of homeomorphisms of a special dendron is zero dimensional and no-
where discrete. Thus it is not locally contractible.

DEFINITION 3.1. A topological space is called contractible if and
only if there exists a continuous function F: X x I — X such that
(1) F(x,0) =z, and
(2) Fl(x,1) is constant,
for all xze X.

DEFINITION 3.2. X is called locally contractible if and only if for
each xe X and neighborhood U of x, there are a neighborhood V of
z and a continuous function F: V x I— U such that

(1) F(v,0) =9, and

(2) F(v,1) is constant, for some constant in U, all ve V.

REMARK. A dendron is a locally connected continuum. Therefore
a component V of any open set U is also open. Further, its closure
is again a dendron. It is well-known that a dendron is contractible
(See [3]), and thus it is also locally contractible.

THEOREM 3.1 Let X be a special dendron. Then G(X) is no-
where discrete.
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Proof. It is sufficient to show that the identity is not isolated.
Let ¢ > 0. We show there exists an heG(X), h +# e, such that
d(h,e) < e. Let a,b be two endpoints of X, and let U be a connected
neighborhood of b of diameter less than . Let p, ., p;, p, be points
of U of order two such that p, separates a from b, p, separates p,
from b, p, separates p, from b, and p, separates p, from b. Thus
the unique arc from a to b contains these points in the order
¢ — p, — P, — Dy — p, — b. Exactly one component of X — {p,, p.} con-
tains p,. Call the closure of this component A. Exactly one com-
ponent of X — {p,, p,} contains p, (and p,). Call the closure of this
component A’. Exactly one component of X — {p,} contains p, (and b).
Call the closure of this component B. Exactly one component of
X — {p,} contains b. Call the closure of this component B’. Let h
be a homeomorphism of X onto itself which carries A4 onto A’ so that
h(p) = p, and h(p,) = p,, and which carries B to B’ so that i(p,) = p,
and h{(b) = b. Let L be the identity on X — (AU B). By Theorem
2.1, such a homeomorphism exists. Since % moves only points of
AUB, and AUBZU, and diam U < ¢, we know that d(h, e) < .

THEOREM 3.2. Let X be a special dendron. Then G(X) is zeiro
dimensional and s not locally contractible.

Proof. Since X is special, the cut points of order greater than
two are dense in X. Thus it follows from Theorem 4.1 of [2] that
G(X) is zero dimensional, and therefore no arcs exist in G(X). But
if G(X) were locally contractible, there would exist a continuous
function F: U x I — G(X) which is not constant on {g} x I, for some
ge U, where U is some open set in G(X). But F'|{g} x I is a non-
constant continuous function from an arc into G(X), and therefore
must contain an arc. This is a contradiction. It follows that G(X)

is not locally contractible.
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