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In the theory of nonparametric minimal surfaces there
is a transformation which replaces a minimal surface by a
certain type of convex surface, Construction of this trans-
formation depends on the exactness of certain differential
one-forms, a consequence of the minimal surface equation. In
this article analogous systems of (n—1)-forms are introduced
on a minimal n-hypersurface, This leads to new tensors and
to relations between them.

Let u = u(x, y) satisfy the minimal hypersurface equation
(1 + 2* + ¢O(r + t) = rp* + 2spg + tg'
It is known (see Radd [6], pp. 57-60) that if we set
w=1+p"+ ¢, a=de+ pdu, 8 = dy + qdu,

then

(2)=0.  a(f)-0.
Also if we define P and @ by

ap =% dQ:_B_,
w w

then
d(Pdx + Qdy) =0,

hence there is a function U satisfying
dU = Pde + Qdy .
The function U has Hessian

aZU aZU . <82U)2: 1
ox* oy’ 0x0Y

and by Jorgens [4, Th. 2], U must be a quadratic polynomial if « is
defined on the whole plane. This yields another proof of Bernstein’s
theorem. Nitsche [5] gave an alternative proof of Jorgen’s result,
Flanders [2] pushed the proof, not the theorem, to n-dimensions, and
Calabi [1] pushed Jorgen’s theorem to five dimensions with smooth-
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ness requirements.
This paper is a partial attempt to extend the formal transition
from # to U to more than two dimensions.

2. Notation. Let u = w(x,, -+, ©,) be C” on a domain in E",
Set
ou o*u 2 .
; = y Ti‘ = w: = 1 + E
P = o ' Pwdm, 2P

The mean curvature of the graph of u is

-1

H = —3[7'02 DT — 2, DT

nw
(See Flanders [3, p. 126].) This graph is a minimal hypersurface if
H=0, i.e.,

w1 = 2L DD

We introduce the matrices

dx = (dxly "'7dxn) ’ p = (ply "'ypn)y
R =||r;ll, B=1I+"'pp.

The minimal hypersurface equation is

(2.1) wtr(R) = pR'p .
We set
a; = dw; + pdu = do; + 3 pp;da; ,
a = (aly "'7“%) .
Hence
(2.2) a=dxB.

3. Relations. Since p‘p = w* — 1 we have
(‘pp)* = (w* — 1)('pp) .
It follows that
3.1) B — w+1)B+wil=0.

The characteristic roots of the rank zero or one matrix ‘pp are 0
with multiplicity » — 1 and (w* — 1). It follows that the roots of B
are 1 with multiplicity # — 1 and w*. This gives us

3.2) |B| = w*.

From (3.1) we have
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(3.3) B =Y+ )1 - B =1-Lpp.
w w

and for the matrix of cofactors,

(3.4) cof B=(w*+ 1) — B=wl—"pp.

We note that B and this matrix cof B are positive definite.
We next establish the relations

(3.5) P A ‘a=wdu,

(3.6) da =dp A du,

(3.7) aANldx=0.
For

P Aa=pA (dx + ‘pdu) = du + (w* — 1)du = wdu,
da = d(dx + pdu) = dp A du,

and
aAN'ldx =(dx + dup) A ‘dx =du Ndu =0,

For convenience we shall set
(3.8) M= Mu) =w> ry;— >, DiriiP; -

When there is no danger of misinterpretation we shall omit the
wedge (A) in exterior products. Finally we use the abbreviation

dt =dx, --- dz,

for the volume element of E”.
We next introduce the usual star (adjoint operator) =. (See
Flanders [3, pp. 15-17; pp. 82 ff.].) With this we have

. N
wdu = Z (_1)l—lpidfc1 ctc dﬂ’?,‘ s dmn ,

d(l*du) = ——l(wdw A *du) + iol>|<0lu
w w? w

= L ride) — LS pdps A xdu)
w w
= %[202 Z T'iidf - Z pm,dwjpk*da:k]

- zlu.g[wz 3L — 2L PiripsldT

and so
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(3.9) d(i*du) = L Mydz .
w w
The components of the vector xdx are the (n—1)-forms

(=1)—'d, -+ da, + -~ de, .

We seek the corresponding expressions in the «;. We introduce the
notation

(3.10) as = (---, (_1)i—1a1...&i...am cee)
Since @ = dxB we have
(-, a1"'&i"'am ces) = (o>, dxl...@...dxm -+-)}(A"'B) .

Now A" 'B is the matrix of (n—1)-rowed minors of the (symmetric)
matrix B. Alternating the signs changes this to cof B, hence

(3.11) a* = (xdx)(cof B) .

THEOREM 1. We have
(3.12) a* A ‘dp = M(w)dt .
Proof. By (3.11)

a* A ‘dp = (xdx)(cof B)(R'dx)
= tr [(cof B)R]dz .

By (3.4) and (3.8),

tr [(cof B)R] = tr [w’R — 'ppR)]
=w*tr R — pR'p

= M(u) .
LEMMA. We have
(3.13) (wdw)a* = pR(cof B)dr ,
(3.14) da* = [pR — (tr R)pldz .

Proof. We have
wdw = p'dp = pR'dx

hence
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(wdw)a* = pR(*dx)(xdx)(cof B)
=pR(dzI)(cof B)
=pR(cof B)dr .

We avoid some signs by transposing and have

a*) = (cof B) ‘(*dx) = (wI — ‘pp) ‘(xdx) ,
(da*) = [2wdwI — d('pp)]‘(xdx)
= [2dxR'p — ‘pdxR — R'dxp]‘(xdx)
= [2R'p — 'p(trR) — R'‘pldt
= [R'p — (trR) 'pldr .

Equation (3.14) follows.
We now state the main result of this section.

THEOREM 2. We have

(3.15) d(_a*) = L Mu)pdr .

Proof. By (3.13),

(wdw)a* = pR(w*l — *pp)dt
= w'pRdz — (pR'p)pdrz .

Using (3.14) we have

(wdw)a* — wda* = w*(tr R)pdt — (pR'p)pdc
= M(u)pdr ,

and the result follows.

COROLLARY. If the graph of w is a minimal hypersurface,

then
1 ) _
d(aa > =0.
We close this section with the proof of one other relation :
(3.16) dua* = pdrt .
By (3.5),

(wduw)a* = p‘aa* = p(a, --- a,) .

But a, «-- a, = | B|dr = w%zr and (3.16) follows.
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4. Minimal hypersurfaces. In this section we assume u is
defined on a contractible domain and that M(u) = 0 so that the graph
of u is a minimal hypersurface.

By the corollary above, each of the (n — 1)-forms

1

1o .cia, ...

J a”

is closed. Hence there exist (» — 2)-forms w; (¢t =1, ---,7n) such
that

(4.1) da)j: (—l)j—lal... &j"' «, (j:1,°°°,n).

THEOREM 3. For each ¢, 7 we have

(4.2) d(a),dx] —_ a)jdw,-) = 0 .

Proof. We multiply the relation (3.7) by
PRI A ey
to derive
(al c C/(\.; e C/(\j e an)(a,‘dx@ + C(jdwj) = 0 y
(=LY, ovs @+ @)dm; + (—1)i(@, -+ & -+ a)da; = 0,
(—1) =1y dw,de; + (—1)(—1)dode; = 0.

and the result follows.

COROLLARY. There exist (n — 1)-forms 7,; such that
Ni; + 05 =0
and
(4.3) dy]“ == a)idxj s wjdx,,; (i,j == 1, cey, n) .
There are too many choices of the w; and 7,;. We should expect
progress on Bernstein’s Theorem in higher dimension if a way were
found of limiting these forms to families with finitely many parameters.
To take one step in this direction we use the operators o, 4.

(See Flanders [2], pp. 136 ff.) One known fact is that the Poisson
equation

df =y

has a solution on E™ for any continuous y. This implies that if 8
is a p-form on E", then
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da = B

has a solution a.
Now consider the (n — 2)-form ®;. We may write

w,i - A)/,,' = da)&.; + Bdk,
hence
da),,; - dadk, .

Thus we may replace w; by ddxn,. Now \; is determined up to an
(n — 2)-form p; such that dody = 0. There are, unfortunately, still
too many of these when n = 3.

REMARK. If f is any function on the hypersurface, its Laplacian
relative to the hypersurface is

(4.4) If = 2 35 2L 5wy - ppdil).
w w

0
0x; 0x;

(Here 4 is the Beltrami operator.) We apply this to f =2 and use
(3.11) to obtain
(4.5) w(T) = d(la*) .

w

We also apply 4.4) to f=u:

wld) = 2L 5 @i, - ppap]
1

-z i[amm — = 1p) |

= oic(%) :

These formulas verify the well-known fact that on a minimal hyper-
surface each of the euclidean coordinate functions z,, «--,2,, % is
harmonic.

5. Equations in component form. We shall restate the results
of §4 in component form. As in that section we assume M(u) = 0.
We set

(5.1) G = L(cof B) = || g |
w

so that (4.1) and (3.11) become
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(5.2) dw; = g;;xdx; ,

where we use the summation convention as we shall in this section.
We write

(5.3) w; = %aijk*(dxjdxk) ’ @i + Qi; = 0.
Now (5.2) may be rewritten as

(5.4) Wije — g,, .

This is obtained by a direct calculation which hinges on the following
readily checked relations :

d%‘k /\ *(dx]dwk) - *dxk y

(5.5)
dx; N\ x(dx;de,) = — =dx; .
Next we set
(5.6) (=17 = huur(dada) ,
where
bijkl + bjikl =0
(5.7)

bijkl + bijlk =0.
In this notation the relations (4.3) become

abijkl

= = @y — Qijp »

(5.8)

Combined with the skew-symmetry of «a;;, in the second and third
indices, this yields in the usual way

(5.9) sy = DCaikt
ox,
where
1
(5'10) Cijkl - ?(_ bijkl + bjkil - bkijl) .
These relations imply
(5.11) bz’jkl = — Cijrr — Cikit »

The skew-symmetries in (5.7) thus are equivalent to
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(5.12) Cijrr + Civir + Cijie + € = 0,
Cijir + Cirir + Chin + Cirji = 0.

Equations (5.9) and (5.4) combine to yield
(5.13)
The minimal hypersurface equation M(u) = 0 may be interpreted as
integrability conditions for (5.13) with the side conditions (5.14).

We may cut down the number of variables by introducing

1
hijie = —(Cijir + Cijue + Cjina + Cjar)

4
(5.14) L
= Z(bikjl + bjlik + bjku + biljk) .

Then we have

hijkl = hjikl
(5.15)

hijkl = hijlk
while (5.13) implies
(5.16) Thisa g

ox;ﬁxl

In addition to the symmetries in (5.15) the quantities A satisfy

(5-17) h’ijkl = h’klij =0
and
(5-18) hijkl + h’jkil + hkijl =0.

These are easy consequences of (5.14) and (5.7). The relations (5.15),
(5.17), (5.18) span all relations in the A’s. To see this we must
count dimensions. The space of tensors (b) subject to (5.7) has
dimension #»*(n — 1)*)/4. The nullity of the mapping (b) — (k) given
by (5.14) is determined by finding independent solutions of

(5.19) (igkl) + (glik) + (3kil) + (ilgk) = 0

where we abbreviate (ijkl) = b;;,,. We need consider only (ijkl)
where 7 <j and k <!, using (5.7) to determine the others. By
(5.19),

41212) =0, (1212) = 0.

The (ijkl) with three distinct indices are represented by (say) indices
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1,1,2,83 and this gives us (1213) and (1312). But by (5.19),
2(1213) + 2(1312) = 0,

hence we are free to choose only one of these. We thus have 3(3)

degrees of freedom in choosing (i5kl) with three distinct indices. If
there are four distinct indices, say 1,2, 3, 4, the quantities we con-
sider are these six:

(1234), (1324), (1423), (2314), (2413), (3412).

The relations (5.19) are seen to yield two independent relations
amongst these :

(1234) + (3412) — (2314) — (1423) = 0,
(1234) + (3412) + (1234) + (2413) = 0 .

This means that with all indices distinct we have 4(;’;’) degrees of

freedom. Thus the desired nullity is

A(5) + (%)

and the rank equals dimension of the (%) space is

n(n — 1) n n\ _ ni(n? — 1)
4 _3<3>"4<4>_ 12

On the other hand, the space of (&) tensors subject to (5.15),
(5.17), and (5.18) has precisely the same dimensions. To see this we
use (5.15) and (5.17) to limit the parameter to those (i¢jkl) for which
17, k<1, and (i) < (kl) in lexicographic order. (Now (ijkl)
denotes 4;;,;.) By (5.17), (1111) = 0 and (1112) = 0. With two distinct
indices we need only consider (1212) and (1122). By (5.17) these are
related by

(1122) + 2(1212) = 0 .

Thus with only two distinct indices we have (g) degrees of freedom.

With three distinct indices, say 1,1, 2, 3, the only possibilities, (1123)
and (1213), are again related by

(1123) + 2(1213) =0 .

We thus have 3<g’> degrees of freedom in this case. Finally with

four distinet indices, say 1,2, 3,4, the three possibilities, (1234),
(1324), and (1423), are related by
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(1234) + (1324) + (1423) = 0

so we have 2(2’) degrees of freedom in this case. In total the
space of (k) we are considering has dimension

n n n\ _ ni(n’ —1)
(2) + 3(3) + 2(4> - 12
This completes our proof that the relations (5.15), (5.17), and (5.18)

span all relations between the h’s. In the course of the proof we
have obtained a set of independent parameters for the (%) space:

hijif ('L < .7) ’
hijin (1<g<k),
Rijir Pt <y <k<l.

This result n*(n* — 1)/12 is certainly better than the number of
b’s (or ¢’s), namely n*n — 1)?/4. When n = 2, both numbers are one
so that equations (5.16) only involve a single unknown function
h = h,,. This is what makes a proof of Bernstein’s Theorem along
the lines discussed in the introduction work.
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