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THE LATTICE OF PRETOPOLOGIES
ON AN ARBITRARY SET S

ALLAN M. CARSTENS

The structure of the lattice of pretopologies on the set S,
unlike that of the lattice of topologies on S (a proper sublattice
of the former), has not been closely examined. We establish
that pretopologies may be identified with products of certain
filters in a natural way. From this identification, we are able
to determine much of the structure of this lattice,

We show that (p(S), <), the lattice of pretopologies (pretopologies
in the sense of Kent [2;p.126]) on the set S, is order isomorphic to
a sublattice of filters on S¥ (using Bourbaki’s [1;p.61-63] approach
to filters). From this, we deduce that (p(S), <) is complete, atomic,
coatomic, modular, distributive, and compactly generated; S being
finite is both necessary and sufficient for the lattice to be co-compactly
generated and complemented (in which case it has a unique complement).
It is infinitely distributive only in the trivial case of S being finite.
(The lattice terminology is that of Szisz [3] with the exception of
coatomic which we use rather than dually atomic and co-compactly
generated which is used for the notion dual to that of compactly
generated.)

1. The isomorphism @. A pretopology » on a set S is com-
pletely determined by a specification of the neighborhood filter 7,(x)
of each z in S. These neighborhoods necessarily satisfy »,(x) < T,
where = is the principal filter generated by {x}. For each ze S, let
Fa) ={3:F>2 & a filter on S}, and let F = [[,.s F(x) (Bourbaki
[1; p. 69-70]); both ordered by § < @ if and only if Fc@. Then F
is a subset of the set of filters on S5. Indeed, it is easily seen
that F, with this ordering, is a sublattice of the lattice of filters on
SS5. For given §, G c F, we have A O ={FUG: Feg, Ge®} and
FVO={FNGFecF Ge®} (FNG +# ¢ since [[,.s{x}e F, G).

Given a pretopology p, we define ¢ by @(p) = Il,es 9,(®). Then
@ is easily seen to be a one-to-one mapping from the pretopologies on
S onto F. Furthermore, if p, ¢ are pretopologies on S, the following
will be equivalent:

(1) n<gq

(2) 7(x) < nx) for all z in S; and

(3) Il.es 771:(37) < Il.es 74(2).

Thus we have
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THEOREM 1. ¢ 1is an order tisomorphism from the lattice of
pretopologies on S onto the sublattice (F, <) of filters on S5,

2. The structure of (F(z), <). We shall deduce the structure
of (F, <) from an examination of the structures of the lattices (F/(x),
<), for each «.

It follows readily from the definition of A and Vv in (F(x), <)
that this lattice is complete, modular, and distributive. The remaining
propositions of this section further describe its structure.

ProrosiTiON 1. (F(x), <) is atomic. Its atoms are precisely those

elements of the form S\{a} for a = @. (A denotes the filter of all
super-sets of 4 in S).

Proof. Given % = 0 =8 in F'(z), select AecF, A+ S. Then there
exists an a = ¢ in S\4, and rS\{—a}!g%.

To show thatmis an atom of (F(x), <) fora # z, let < 'S—\{;f.
g‘_hen S\{a} ¢ F for all Fe$, and Fc S\{a} for no Fe®. Thus § =
S=0.

PROPOSITION 2. (F(x), <) is coatomic. Its coatoms are precisely
those ¥ = = A 11 where Ul = = is an ultrafilter.

Proof. Let & e F(x) be distinct from 1 =. Then since § is not
an ultrafilter, there must be at least two ultrafilters above §. One
of these, say 11, must be distinct from . Then § <z A U.

To show that @ A U is a coatom of (F(x), <), assume there is an
Fe Fr) with o A1 < §F < z. Since § < w, {F\{z}: FeF}is a base for
some filter ®. Clearly TAG = %. Now, for each Uell, there exists

Fe$ such that F'c Uc{a}, sincez A U < . Thus F\{z}c U. Hence
& > U. But U is an ultrafilter. Consequently & = U. Thus, we must
conclude that 2 AU =% A ® = &, a contradiction.

ProPOSITION 3. & € F(x) is compact if and only if & = A for some
Ac S with xe€ A. Consequently (F(x), <) is compactly generated.

Proof. Let e F(x) be compact. Observe that § = V {F: Fe .
Thus F < V2, F. for some choice of % and F,e F@=1,---n). But
since filters include finite intersections of their members, § = N, F; =

» F,. Thus § = N~ F..

Conversely, let % = A4 and let § < V,.,F,. Then since Ae,

there exists I'ycI” (I, finite), and F, e, such that N,.,F,C A.
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Thus § < V;er, Fr
For any ® e F(x), we have

Vi F <6, Fcompact} < G = V{G: Ge®}
< V{%: § < 6, F compact}

thus ® = V{F: § < ®, F compact} and (F(x), <) is compactly generated.

PropoSITION 4. € F(z) is co-compact if and only if § = A where
A is some finite subset of S containing x. Consequently (F(x), <) is
co-compactly generated if and only if S is finite.

Proof. Let %eF(a) be co-compact and let T = S\{z}. Observe
that T > S = /\“T {x a} Consequently for some » and a;e T (7 = 1,

n), F=> AL l{x a} = U‘:1 {, ail}. Thus U~ {z, a;} €. But any
filter containing a finite set B can be expressed as A for some A < B.
Thus ¥ = 4 for some AC U™, {, a.}.

Conversely, let & = A where A = {z, a,, a, -+- a,}, and suppose
that > A,.r &, Then we may select F, € §, such that U,., F, 2 4.
Select v; so that a,e F;,. Then § > AL ...

If S is finite, each e F(x) is of the form A with A finite, so
(F(x), <) will consist only of co-compact elements and hence be co-

—
compactly generated. Observe however, that A,., 4, = U,.r 4, for
arbitrary filters. Thus, in particular, the only elements of (F(x), <)
which will be co-compactly generated are the principal filters. Con-
sequently (F(x), <) is not co-compactly generated when S is infinite.

ProposITION 5. &€ F(x) has a complement ® if and only if § = A,

In this case & is unique and & = (S\4) U {»}. Consequently (F(x),<)
is complemented if and only if S is finite.

—_ 1 —_—

Proof. Let F=A. If & = (S\A)U {z}, then F A G =S =0 and
XV ®=2=1. Thus ® is a complement of . Let & be any com-
plement of . Then since F A & =S, (S\4) C{x} must be in &.
But VvV ® =2, so no proper subset of (S\4)U {»} may be in &.

1
Consequently & = (S\A U {z} =

Suppose on the other hand, that § is not principal. Let 4 = N .
Then A # ¢ since x € A. Suppose that © is a complement of §. Then
for each Fe$, Ge®, we have FUG = S, since F A & =S. Thus

= (S\A) U {«#} must be a subset of every G in &. Observe that any
F in § will contain A as a proper subset since ¥ is nonprincipal.
Thus any Fe @ will include points of B distinct from x. Hence for
each Ge®, FF\V G will contain at least two points. But this violates
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the requirement that ¥\ ® = z. Therefore % can not have a com-
plement.

We conclude this section with a discussion of infinite distributivity.
Let &, &€ F(x) (ye ') be arbitrary. Then, since filter joins are given
by finite intersections, we have F A (V;r8) = VierF A ). We
also have FV (A;erB) = Arer(@ V S,). However, if S is not finite, we
need not have equality. A particular example can be found by letting
r=8g, = f')',_a:}—,' and § = {4:xc A, A cofinite}. For in this case
{ste Arer (F V @) is not cofinite. Thus (F(x), <) is distributive only
in the trivial case where S, and consequently Fl(z), is finite.

3. Structure of (F, <) and (»(S), <). The results of §2 carry
directly over to the lattice (F, <). For letting & = [T.cs For ® = [L.es
®, with §,, ,e F(x) for each x, we see that § < ® if and only if
B <O, in (F(x), <) for each z, while F A O = [[,.s(F. A ®,) and
BV =TI1.58. VG,). We summarize these results in the following
proposition. Each of its components follows from the coresponding
result in § 2.

ProposiTION 6. 1. (F, <) is complete, modular, and distributive.
It is infinitely distributive only in the trivial case of S, and consequently
F', being finite.

2. (F, <) is atomic (coatomic). F = [[.esF.€ £ is an atom (co-
atom) if and only if &, = S for @ = s (§, = w for x # s) and §, is an
atom of F(s) (a coatom of (F(s)).

3. FeF is compact (co-compact) if and only if F, is compact
(co-compact) for each x € S and B = S (B = %) except for most a finite
number of the xze S.

4. (F, <) is compactly generated.

5. (F, <) is co-compactly generated if and only if S is finite.

6. § has a complement & = J],.s®, if and only if &, and G,

are complements for each z¢€ S.
7. (F, <) is complemented if and only if S is finite. In this case

complements will be unique.
Using the isomorphism ¢, these results immediately carry over to

(p(S), <). Thus we have

THEOREM 2. (p(S), <) 1s always complete, modular, distributive,
atomic, coatomic, and compactly generated. It is complemented (and
has unique complements), co-compactly generated, and infinitely dis-
tributive if and only if S is finite.
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