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A NOTE ON A THEOREM OF HILL

PHILLIP GRIFFITH

Recently Hill has shown the existence of an abelian p-
group with the property that each infinite subgroup can be
embedded in a direct summand of the same cardinality but
the group is not a direct sum of countable groups. Megibben
has since observed that this phenomenon occurs in a larger class
of abelian groups. In this note we show that such pathology
is present in modules for a rather wide class of rings. In
fact, the lack of such phenomena for a particular class of
modules serves as a characterization for left perfect rings.
Our results also yield some facts concerning pure injective
modules,

All rings in this paper are associative with identity and all mod-
ules are unital.

2. A characterization of left perfect rings. Bass [1] calls a ring
R left perfect if each left R-module has a projective cover (projective
cover is the dual of injective envelope). Among several other charac-
terizations of left perfect rings, Bass proves that R is left perfect if
and only if R has the descending chain condition on principal right
ideals. Hence, assuming that R is not left perfect, we can obtain a
strictly decreasing sequence of principal right ideals of the form

aRD>aa,RD <+« Daty+--a,RD «--

We set P=11,.,Re,, where Re, = R for each n, and we denote by
S the submodule of finitely nonzero sequences in P. We shall use the
notation >\, 7r.e;, for m < n, to denote a vector in P whose ith co-
ordinate is zero for 7 > n and ¢ < m and whose ith coordinate is r;e;
for m <1 <n. We define elements
¢™ =3 (A, +-+a)e;eP for m=1,2, ...,
izm

Let A be the submodule of P generated by S and the elements ¢™
for m = 1,2, -... With this notation established, we prove the fol-
lowing lemma.

LEMMA 2.1. Let R be a ring that s not left perfect and let A
and S be defined as above. Then A is free and S is mot a direct
summand of A.

Proof. First we note that if n < m, then
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m—1
(*) €™ =3, (@n oo )6 + (g o+ Qi)™

izn
and in particular
¢ =a,le, + ") for n=12 ..,

Now suppose that A = S@ B. Then ¢* =s, + b, where s, €S and
b, # 0e B. From property (x) above, we have that, for n > 1,

¢V =8, + (a, +++a,_)c™ where s,eS.
Therefore

s+ b, =cY =38, + (a, - a, )™
= S+ (@ 0+ @yi)(8, + by)
=8, F (@ oo Wpy)S, 4 (Ay + o+ Apy)b,.

Hence s, = s, + (¢, -+ a,_,)s, and b, = (a, -+~ a,_,)b, for each n > 1.
Therefore ¢ = s, + (a, -+ a,_)b, for n = 2,3, ..., Since s, has only
finitely many nonzero coordinates, it follows that there is a positive
integer r such that a@,:--a,=a, -+ a,a,.,%. But this implies that
a, +-a,R=a +---a,. R which is a contradiction. Thus S is not a
summand of A.

To show that A is free, let y, = ¢, + ¢**" for n =1,2, ..., Since
¢™ = a,y, by property (x) above, it follows that A is generated by
{Yu}nco. Suppose that »y, + +++ + 7,4, = 0 where r,€ R. Then

re® 4 e 4 eee £ = —rie, — 18, — o0 — 10, .

Since the first coordinate of the left hand side is zero, it follows that
r, = 0. A repetition of the preceding argument shows that », = r, =
- =7, =0. This implies that A is free with {y,}..., for a basis.

We observe from [1] that a left R-module is torsionless if and
only if it can be embedded as a submodule of a direct product of
copies of R. We shall call a left R-module G ¥,-separable provided G
is flat, torsionless and that each countably generated submodule of G
is contained in a countably generated direct summand of G (this de-
finition parallels the definition given by L. Fuchs [4] in the context
of W,-free groups). We now prove the main result of this section.
The proof is modeled after that of Hill’s [5].

THEOREM 2.2. A #»ing R is left perfect if and only if each
W.-separable left R-module is a direct sum of countably generated
modules.
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Proof. If R is left perfect, then by Theorem 3.2 [2] any flat
left module is projective. Since an YR,-separable left module is flat,
it follows from Kaplansky’s theorem [6] that each R,-separable left
R-module is a direct sum of countably generated modules.

Now suppose that R is not left perfect. This implies by Theorem
P [1] that R has a strictly decreasing sequence

aRoaa,R>D --- Da,---a,RD -+

of principal right ideals. Set P* = II,.,Re, where Re, = R for each
a < 2 (2 denotes the first uncountable ordinal). We construct a left
submodule G of P* such that G = U,<, G. wWhere {G,}.<, is a monotone
increasing chain defined as follows: G, = 0, G, = Re, and suppose that
G, has been defined for each a < B8 such that the following conditions
hold:

(i) If ais a limit ordinal, @ < B, G, = U< G,-

(ii) If a — 1 and a — 2 exist, G, = G._, B Re,_,.

(iii) If @ — 1 exists and is a limit, there is a monotone increasing
sequence o,(n) of ordinals less than @ — 1 such that o,(n) — 2 is de-
fined for each » and such that o,(n) converges to & — 1. Then ¢ =
Siizm (@ oo - a))e, i for m =1,2, .-+ and G, is generated by G,._, and
{citn)}n<w'

(iv) If 0,:, denotes the natural projection of P* onto /7, ,Re; and
if vy +1<a<pB, then p,.,(G,) = G;-,.

(v) G, is not a direct summand of G,.; if « is a limit ordinal.

(vi) G, is flat for a < 8.

If B is a limit ordinal we set G; = U.<;s G. and if both 8 — 1 and
B — 2 exist we set Gy = G4_, D Res_,. It is straightforward in either of
the above two cases to show that (i)-(vi) hold for the collection [G,].<;s.
Now suppose that 8 — 1 is a limit ordinal. Define g,(n) and ¢/ so
that (iii) is satisfied and define G; to be the submodule generated by
Gs_, and {c{"},<.. Suppose that v + 1 < B and consider p,.,(G;). To
show that (iv) is satisfied, it clearly suffices to show that o,.,(c{™) € G, ...
But this is a direct consequence of the fact that ¢/ = 3., (@ - - @,)e, 50
and that o04(2) > v + 1 for all ¢ larger than some integer ¢,. To see
that (v) holds, let 4; be the set of ordinals {g;(1), 65(2), ---} and let
I, be the ordinals less than 8 that are not in 4;,. Let B=G,N I, ey,
A=G: N H{lﬂRez and let S denote the finite sequences in /7 I Re,. It
is routine to show that G; = B A and that G,_, = B S. We ob-
serve that (up to isomorphism) our A and S here are the same as the
A and S, respectively, in Lemma 2.1. It follows that G,_, is not a
direct summand of G;,. We also see that G,_, is flat since B is neces-
sarily flat and since A4 is free. Thus the collection [G,].-; satisfies
(i)-(vi) and hence we obtain G = ., G. where {G,},., satisfies (i)-(vi).
Note that G is torsionless since G is a submodule of P*. G is flat
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from (vi) since a direct limit of flat modules is flat. Property (v)
implies that G is not a direct sum of countably generated modules.
Finally, property (iv) guarantees that p,,,, when restricted to G, is a
projection of G onto G,.,. Thus G is Y,-separable.

From the above proof, we obtain the following corollary.

COROLLARY 2.3. A ring R 1is left perfect if and only if each
W.-separable left R-module is projective.

3. Some remarks on pure injective modules over artinian
rings. An interesting consequence of our Lemma 2.1 is that the direct
sum of Y, copies of a ring R (as a left R-module) is not a direct
summand of the corresponding direct product of ¥, copies of R if R
is not left perfect. In this section we wish to consider in part the
question of when the direct sum of infinitely many copies of R (as a
left R-module) is a direct summand of the corresponding direct product
of copies of R. More generally, we consider the problem of determin-
ing when projective modules are pure injective modules in the sense
of Warfield [7]. For commutative Noetherian rings we obtain a com-
plete answer to both of the above questions. A submodule 4 of a
left R-module B is called a pure submodule provided, for any right
module M, the natural homomorphism MK A— M@ B is injective.
A module @ is called pure injective, if for every module B and pure
submodule A, each homomorphism of A into @ extends to a homomor-
phism of B into Q. Hence, if a pure injective module Q is a pure
submodule of a module B, then @ is a direct summand of B. Our
main theorems of this section follow the next lemma.

LEmMMA 3.1. If R is a left artinian ring, then any pure sub-
module of a left projective R-module is a direct summand.

Proof. Suppose that A is a pure submodule of a left projective
module P and suppose that M is an arbitrary right R-module. From
the exact sequence

0 = Tor® (M, P)— Torf (M, P/JA) - MQA— MR P,

we obtain that Tor? (M, P/A) = 0 since the homomorphism MQQA— MK P
is injective. Hence P/A is a flat left R-module. By Theorem P [1],
P/A is projective and thus A is a direct summand of P.

In what follows, >, 4; will denote the finitely nonzero vectors in
the direct product I7A,.
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THEOREM 3.2. If R is a commutative artinian ring, then each
projective R-module is pure injective. Moreover, 1f R is a commuta-
tive Noetherian ring and if each projective R-module is pure injective,
then R 1is artinian.

Proof. First suppose that R is a commutative artinian ring. It
suffices to show that each free R-module is pure projective. By Pro-
position 9 [7], R is pure injective as a module over itself. Let F =
S« R be an arbitrary free R-module and let P denote the direct pro-
duct P = II,R containing F. It is elementary to see that F' is a pure
submodule of P and that P is pure injective since R is pure injective.
By Theorem 3.4 [2], P is also a projective R-module. Hence, by
Lemma 3.1, F'is a direct summand of P and therefore is pure injective.

Now suppose that R is a commutative Noetherian ring for which
each projective module is pure injective. Let S and A be as in Lemma
2.1. Note that S = X3 R and that S S A & Il R. Therefore S is
pure in A and is therefore a direct summand of A. Hence Lemma
2.1 yields that R is a perfect ring. Since R is also Noetherian, we
have that R is artinian.

COROLLARY 3.3. If R is a commutative artinian ring, then the
direct sum >, R is a direct summand of the direct product II,R for
each cardinal number a. Moreover, 1f R is a commutative Noetherian
ring and 1f D R is a direct summand of [y R, then R s artinian.

We conclude our consideration of pure injective modules with an
answer to the converse problem answered in Theorem 3.2, that is, we
classify those rings for which every pure injective R-module is pro-
jective. Our solution here needs no initial assumptions on the ring.

THEOREM 3.4. A ring R has the property that each pure injective
left R-module is projective if and only if R is semi-simple and ar-
tinian.

Proof. The sufficiency is clear. Hence suppose that R has the
property that each pure injective left R-module is projective. Since
each injective left module is pure injective, it follows that each in-
jective left R-module is also projective. By Theorem 5.3 [3] of Faith
and Walker, we have that R is quasi-Frobenius. Since each left R-
module can be embedded as a pure submodule of a pure injective
left R-module by Corollary 6 [7], we have that any left R-module is
isomorphic to a pure submodule of a projective module. Since a quasi-
Frobenius ring is left artinian, it follows by Lemma 3.1 that each
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left R-module is projective. It is well-known that such a ring is a
semi-simple artinian ring.
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