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EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS
FROM CERTAIN SUBVARIETIES OF A POLYDISC

HERBERT ALEXANDER

Let E be a subvariety of the unit polydisc

U" = {(zlf . > , z N ) e C " : \ Z i \ < l f l ^ i ^ N }

such that E is the zero set of a holomorphic function / on TJN,
i.e., E = Z(f) where Z(f) = {ze UN: f(z) = 0}. This amounts to
saying that E is a subvariety of pure dimension N — 1. In
[2] Walter Rudin proved that if E is bounded away from the
torus TN = {(zlf , zN) e CN: \ z> \ = 1,1 ^ i ^ N], then there is
a bounded holomorphic function F on UN such that E—Z(F).
Call such a subvariety E, that is, a pure N — 1 dimensional
subvariety of f/̂  bounded from Γ^, a Rudin variety. We
are interested in the following question: When is it possible
to extend every bounded holomorphic function on a Rudin
variety E to one on UN? Examples show this is not always
possible. We will say that a pure N — l dimensional subvariety
E of UN is a special Rudin variety if there exists an annular
domain QN = {(zu , zN) e CN: r < \ zt \ < 1,1 ^ i ^ N} for some
r(0 < r < 1) and a δ > 0 such that

( i ) £ T l ^ = 0 and
(ii) if 1 ^ k ^ JV and (z', α, ̂ /;) € (Q -̂1 x U x Q -̂fe) Π £;

and (^;,/3,z") e (Q*-1 X Ux QN~k) nEanάaΦβ, then \a - j9| ^ 5.
Obviously (i) implies that a special Rudin variety is a Rudin
variety. We have the

THEOREM. If E is a special Rudin variety in UN, then there
exists a bounded linear transformation T: H~(E)-> H~(UN)
(where if00 is the corresponding Banach space of bounded
holomorphic functions under sup norm) which extends each
bounded holomorphic function on E to one on UN.

REMARK. The proof of the theorem is a modification of the proof
in [2] of Rudin's theorem: the changes reflecting the fact that we are
dealing with an additive problem while Rudin's was of a multiplicative
nature. I am further indebted to Professor Rudin for some comments
(on a preliminary version of this paper) which led to improvement in
the hypothesis of the theorem.

The following lemma is well-known and easy to prove.

LEMMA 1. / / 0 < r < 1 and Q = {λ e C: r < | λ | < 1} and

h(\) = Σ βiΛ > Mλ) = Σ an\
n
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for XeQ, then

WKWQ £K\\h\\Q

where K ( > 1) is a constant depending only on r.

If h is holomorphic on QN = {(zlf , zN): r < \z{\ < 1,1 ^ i ^ N)

then h has a Laurent expansion

( 1 ) h(zly s2, , zN) = Σ α( î» n2i , nN)z^z2

nz V ^ .

Following [2], we define Tr̂ fo, 1 ^ j ^ iSΓ, to be the holomorphic function
on QN whose Laurent series is obtained by deleting in (1) all terms
in which nό ^ 0. Lemma 1 implies

LEMMA 2. | | πάh \\QN <; K\\ h \\QN.

Proof of the theorem. Since E is a subvariety of UN of pure
dimension N — 1, there exists by [1, p. 251] a function / holomorphic on
UN such that at each point of UN the germ of / generates the ideal
of germs of holomorphic functions which vanish on the germ of E at
the given point. In particular, E = Z(f). We will show that df/dzk Φ 0
on (Q*-1 x U x QN~k) Γ\ E for 1 ^ k ^ N. We give the proof for k = 1,
the other cases are identical. Let (a, a') e(U x Q^"1) Π i?. Now / is
regular in the first coordinate [1, p. 13] at {a, a') since otherwise
/(ζ, α') vanishes in a neighborhood of a and hence for | ζ | < 1 and so
E = Z(f) 3 {(ζ, <*'): I ζ I < 1}, contradicting (i) in the definition of a
special Rudin variety. Thus we can apply the Weierstrass preparation
theorem and write in some neighborhood of (a, a'),f = Ωp where Ω is
invertible and p is a Weierstrass polynomial. Factor p into primes:
p = pe

Lι . . . pit where p and the p/s are of the form

(ζ - ay + α.-Λζ'XC - aγ~' + . . . + αo(ζ')

for (ζ, ζ') near (α, α') with α^α') = 0. Now the degree of each pi

must be equal to 1 since otherwise there would exist ζ'n —> α' with
ζ'n off the discriminant locus of some p{ and so there would exist
an Φ βn near a with Pi(an, ζr

n) = 0 = ^(/SΛ, ζ;) and thus (αw, ζ'n) and
</9w, ζ'w) are in ([7 x Q^-1) n ^ , but ζ'n->a' implies α Λ -»α: and /Sw-> a
and so | αTO — βn \ —> 0, contradicting (ii). A similar argument also
using (ii) shows that there cannot be more than one p{ and so / = Ωp{1

near (a, α'). Finally, since the germ of / generates the ideal of E at
(a, ar), e, must be equal to 1. Thus /(ζ, ζ') = β(ζ, ζ')(ζ - α + αo(C))
and df/dζ(a, a') = β(α, α') ^ 0 as required.

Now by Theorem 1 of [2] applied to E = Z(f) there is a bounded
holomorphic function F on £F such that E = i?(i^). Examination of the
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construction in [2] shows that 1/F is bounded on QN since F — fxe
9~91

on QN and l/fι and | Re (g — gx) | are bounded on QN. We will show
that there is an ε > 0 such that | dF/dzk | > ε on (Q1*-1 x U x QN~k) Π i£
for 1 <, k ^ N. We do this for A = 1, the finitely many other cases
are identical. From [2], F = fe9 for some g and so df/dz1φ0 on
(ί7 x Q^"1) n E implies dF/dz, Φ 0 there. Now for z' e Q^1

2τα Jιcι=r

is a continuous integer-valued function and so is a constant mι giving
the number of zeros for F( , z') in £7. Since these zeros are the points
of (U x Q v - 1) Π i? and dF/dzi Φ 0 there, it follows that the mι zeros
•#ι(z')> * i amλ(

zr) a r e distinct simple zeros. By (ii) then, | a{{zf) — aά(z') \ ̂  δ
for i Φ j . Write F( , zf) = J5Jϊ, where 5 is the Blaschke product with
zeros at a^z'), -- ,ami(z'). Now since 1/F is bounded on QN 1/H is
bounded on U. But on E, dF/dz1 = dB/dzι if and since

is bounded from zero on E by some constant depending on δ, and as
H is also bounded from zero independently of z', it follows that dF/dz1

is bounded from zero on (U x Q^"1) Π E.
Let c? = dist (E, QN) which we may assume is positive by increasing

r if need be. Let g be a bounded holomorphic function on E. We
shall extend g to a bounded function on EP. By the general Oka-
Cartan theory [1], there is a holomorphic extension G of g to £P; G
need not be bounded. Since F Φ 0 on Q^, we may define a function
^ o n U x Q M as follows: Let (2lf z')eU x Q^"1. Choose a circle Z1

about 0 lying in Q and enclosing ^ with positive orientation and set

27Γ^ C i

fex is clearly independent of the choice of Γ and holomorphic on U x QN~Ύ.
We claim that G/F - h, is bounded on QN. Let (zl9 zf) e QN where zι e Q,
z' e Q^-1. Let Γ19 Γ2, , Γmχ be small circles about at(z')f , ocmi(z'),
the zeros of F( ,2;'). Then the Cauchy integral formula reads

Therefore

ζ —

Clearly for rA = radius of A ,
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2πi )ι
G(ζ, z')IF(ζ, z')

2πi )rk ζ — z1

1 f G(ζ, z')
27ΓΪ J\ζ-ak(z')\=rk ζ — £ χ , z') - F{ak(z'), z') ζ - ak{z')

So letting the radii of the Γk go to zero we get

Since (αΛ(2')> 2') € (U x Q "̂"1) Π S, recalling the significance of d and ε
we get

\\G/F- KW^^ mW9\\
αε

In the same way for each i, 1 < i ^ N we have an integer m t and a
function fe4 holomorphic on Q1-1 x U x QN~l such that

Now let m = max {m^ 1 ^ i ^ ΛΓ} and let A = m/dε. Subtracting in
the above, we get || ht - h \\QN ^ 2A \\ g \\E. Now following [2] closely,
set h = (1 - ^ ( l - 7Γ2) (1 - πN)hίΛ Since π ^ = 0, h extends (uniquely)
to a holomorphic function on UN. Since h5 is holomorphic on

Q*-1 x U x QN~s, πjhj = 0

and so T Γ ^ = πj(hL — h/} and therefore by Lemma 2,

Now, since h - hί= - Σ πΛi + Σ πiπjhι \- '' a n d s i n c e we get by
induction and by use of Lemma 2 that \\πhπiz πishι \\QN <: 2KSA \\g\\E,
it follows that \\h — KWQN ^ BA\\g\\E where B depends only on K.
Now consider G ~ G — Fh. G is holomorphic on UN and extends
g since G does. On QA\ G = ^(G/i^ - h,) + Ffa - h). Therefore
||G||<2A'_^ | | i ^ | | ^ A | | ^ | U + \\F\\σπBA\\g\\E. Thus G is bounded on UN

and || G \\VA £ 7 || g \\E where 7 = A(l + £) || F\\πN is independent of g.
Next we show that G does not depend on the choice of G made

at the beginning of the construction. Suppose G were another (not
necessarily bounded) extension of g to UN. As above we get
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GIF dζ_ 1 f
ί ~ Γ \

2π% )r

(2) j ^ - f i ^ * t
2π% J

Since for z' e Q^~\ (G - G)( , 2') vanishes at α^Os'), , ami(z') and since
F( ,z') has simple zeros and only at these points, (G — G)/F(-,z') is
holomorphic on U and the right hand side of (2) equals (G — G)/F
and so on U x Q*"1

<3) Λ1-A1 = (G-G)/F.

Since the left hand side of (3) is holomorphic on U x Q^"1, so is the
right and consequently (G - G)/F = (1 - ^ ( ( G - G)/JP) on ζ ) \ In
the same way we see that for each j , (G - G)/F = (1 - 7ϋό){{G - G)/F)
on QN. Therefore on QN we have

(G - G)/F = Π (1 - πd)(G - G)/F = Π (1 - πs)(h, - K) = h - h .
3=1 3=1

Thus G — Fh — G — F ^ on QN and so on UN. Since the extensions
thus coincide, we have a well-defined map T: H°°(E) —> H°°(UN) such
that | | T ( < 7 ) | U ^ 7 | | ί / | U .

To see that T is linear, let g and g be bounded holomorphic func-
tions on E and let λ be a complex number. Let G and G respectively

be arbitrary holomorphic extensions to UN. Let h19 hλ1 ht and h, h,h
be the /^ and the h for G + λG, G and G respectively. Then

2τrί

— zι 2πι J ζ — ^

and f = 77(1 - π3)hγ = [77(1 - τri)](/^1 + λ/O = h + Xh. Therefore

+ Xg) = (G + λG) - ^(A + λΛ)

- (G - FA) + λ(G - Fh) =

EXAMPLE. Let E be the Rudin variety in U2 given by E =
— ί)(£i22 — έ)) Then 7? is the disjoint union of Z(z2 — i) and

Z(zxz2 — £). Let geH°°(E) be given by

- - | ) = 0 and flf I



490 HERBERT ALEXANDER

Then g admits no bounded holomorphic extension to U2. For if G were
a bounded extension of g to U2 we would have for ze U,z near 1,

2z 2 / 2πi Jιcι=i

But as z-+l, the integral is bounded and (1/22) — (1/2)—>0, a contra-

diction.
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