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EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS
FROM CERTAIN SUBVARIETIES OF A POLYDISC

HERBERT ALEXANDER

Let E be a subvariety of the unit polydisc
U ={@&, -+, 2n)e C¥:|2z;| <1,1 =1 < N}

such that E is the zero set of a holomorphic function f on U¥,
i.e.,, E=Z(f) where Z(f)={zc U”: f(z) =0}. This amounts to
saying that F is a subvariety of pure dimension N —1, In
[2] Walter Rudin proved that if F is bounded away from the
torus T% = {(z,, -+, 2y)€C?: |2;| = 1,1 < © £ N}, then there is
a bounded holomorphic function F' on U? such that E=Z(F).
Call such a subvariety E, that is, a pure N — 1 dimensional
subvariety of U” bounded from 7%, a Rudin variety, We
are interested in the following question: When is it possible
to extend every bounded holomorphic function on a Rudin
variety E to one on U”? Examples show this is not always
possible, We will say that a pure N — 1 dimensional subvariety
E of U” is a special Rudin variety if there exists an annular
domain Q¥ ={(z;,--+,2y)€CY:r<|2;] < 1,1 =<1 < N} for some
70 <r<1) and a 6 > 0 such that
(i) En@¥ =@ and
(ii) if1=k=<Nand (,0,2)e@ X UXQ**NE

and (2/,53,2)e (@ 1'x UX Q¥ *nE and a + B, then |a —B] = 4.
Obviously (i) implies that a special Rudin variety is a Rudin
variety, We have the

THEOREM, If E is a special Rudin variety in U”, then there
exists a bounded linear transformation T: H>(E)— H=(U¥)
(where H= is the corresponding Banach space of bounded
holomorphic functions under sup norm) which extends each
bounded holomorphic function on E to one on U?,

REMARK. The proof of the theorem is a modification of the proof
in [2] of Rudin’s theorem: the changes reflecting the fact that we are
dealing with an additive problem while Rudin’s was of a multiplicative
nature. I am further indebted to Professor Rudin for some comments
(on a preliminary version of this paper) which led to improvement in
the hypothesis of the theorem.

The following lemma is well-known and easy to prove.
LEMMA 1. If 0<r<land Q={nNecC:r <|MN| <1} and
B = 3 ant, b = 3 an
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for ne @, then
[[hlle = K|k |lg

where K (> 1) is a constant depending only on r.

If % is holomorphic on Q¥ = {(2,, ++-,2y):7 < |2;| < 1,1 <7 < N}
then % has a Laurent expansion

(1) (21 2oy v 00y 2y) = D, AWy, Mgy =00y My)2, 2,2 00 2"V L

Following [2], we define 7;k,1 < j < N, to be the holomorphic function
on @Y whose Laurent series is obtained by deleting in (1) all terms
in which n; = 0. Lemma 1 implies

LEMMA 2. || 7k ||y < K || 7t ||ox.

Proof of the theorem. Since E is a subvariety of UY of pure
dimension N — 1, there exists by [1, p. 251] a function f holomorphic on
U" such that at each point of U" the germ of f generates the ideal
of germs of holomorphic functions which vanish on the germ of E at
the given point. In particular, £ = Z(f). We will show that df/oz, = 0
on (@' X UXx Q" *YNEforl<k<N. Wegive the proof for k=1,
the other cases are identical. Let (a, @) e (U x @' )N K. Now f is
regular in the first coordinate [1, p.13] at (a, @) since otherwise
f(&, o’) vanishes in a neighborhood of a and hence for [{| < 1 and so
E=Z(f) 2 {({,a"): || < 1}, contradicting (i) in the definition of a
special Rudin variety. Thus we can apply the Weierstrass preparation
theorem and write in some neighborhood of («, '), f = 2p where Q2 is
invertible and p is a Weierstrass polynomial. Factor p into primes:
p = pi--- pit where p and the p,’s are of the form

C=—a)" + a, (N —a) ™ + -+ + al)

for (¢, (') near (a,a’) with a;(«’) = 0. Now the degree of each p;
must be equal to 1 since otherwise there would exist ¢, — «’ with
¢, off the discriminant locus of some p; and so there would exist
«a, #+ B, near a with p,a,, ) = 0 = p,(B.,,{,) and thus («,, {,) and
(B,, ) are in (U x Q") N K, but {, —»«a implies a, — a and B, — «
and so |«a, — B,|— 0, contradicting (ii). A similar argument also
using (ii) shows that there cannot be more than one p, and so f = Qpa
near (a, «’). Finally, since the germ of f generates the ideal of E at
(a, '), e, must be equal to 1. Thus f(, ) = QC, UNC — a + a,({))
and of/ol(a, ') = Qa, a’) = 0 as required.

Now by Theorem 1 of [2] applied to E = Z(f) there is a bounded
holomorphic function F on U" such that F = Z(F'). Examination of the
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construction in [2] shows that 1/F is bounded on Q" since F = fie*%
on QY and 1/f, and |Re(g — g¢,)| are bounded on Q¥. We will show
that there is an ¢ > 0 such that |0F/oz,| >¢ on (Q*' x U x Q" NE
for 1 <k < N. We do this for k£ = 1, the finitely many other cases
are identical. From [2], F = fe’ for some g and so df/oz, #+ 0 on
(U x Q") N E implies 0F/dz, = 0 there. Now for 2’ € Q"

o —s 1' S 0F[0z\(C, 2') dc
27y Jiw=r  F(, 2

is a continuous integer-valued function and so is a constant m, giving
the number of zeros for F'(-,2’) in U. Since these zeros are the points
of (U x @) N E and 0F/0z, + 0 there, it follows that the m, zeros
a(z'), -+ -, @, (2') are distinct simple zeros. By (ii) then, |a;(2') —a;(z")| = 0
for © = 5. Write F(.,?’) = BH, where B is the Blaschke product with
zeros at a,(¢), -+, a, (2). Now since 1/F is bounded on Q" 1/H is
bounded on U. But on E, dF/oz, = 0B/oz,-H and since

|, (') — a') | = 9, 0B/0z,

is bounded from zero on E by some constant depending on ¢, and as
H is also bounded from zero independently of 2/, it follows that 0F)/oz,
is bounded from zero on (U x Q") N K.

Let d = dist (F, Q") which we may assume is positive by increasing
7 if need be. Let g be a bounded holomorphic function on E. We
shall extend ¢ to a bounded function on U”. By the general Oka-
Cartan theory [1], there is a holomorphic extension G of g to U"; G
need not be bounded. Since F' = 0 on @Q”, we may define a function
h, on U x Q"' as follows: Let (z,2')e U x @"'. Choose a circle I"
about 0 lying in @ and enclosing z, with positive orientation and set

no 1 G, ?)/F(E, 2)
I’L1(Z1y Z) = o SI" z— z d(: .

h, is clearly independent of the choice of I" and holomorphic on U x @¥-'.
We claim that G/F — h, is bounded on @Y. Let (z,, #') € Q" where z, €@,
Ze@Q . Let I, I, ---,I', be small circles about a,(2'), -+, @, (2),
the zeros of F(-,2’). Then the Cauchy integral formula reads

1 GE AFE ) g

(G/F)(z,2") = —2—7'[—@~ Sl‘—l"r‘“"'m L—=

‘Therefore

(GIF — h)(2, ?) = — ’"z 5

L { GGG g
Iy C — 2 ’

Clearly for r, = radius of I,
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L[ ECLAFCH g

211 {—z
_ __l_g G(, ?) { —az) ag
271 Jimapani=r, § — 2, F(, 7)) — F(a,(7'),?) { — a,z)
— g(ak(z’)y Z’) as — O
(@) — 22 (@), #) e
1 acl y
So letting the radii of the I, go to zero we get
GIF — h)(z,2) = — 3, At :
o) — 21)55(0@0(%’), ?')

Since (a,(z), 7)€ (U x @) N E, recalling the significance of d and ¢
we get

| GIF — Iyl < ml(!i_gll _

In the same way for each 7,1 < ¢ < N we have an integer m, and a
function 4; holomorphic on Q' x U x Q"% such that

F — h; A'Sﬂz_iu_g_ll_ﬁ'-_
G/ illov = =+

Now let m = max {m;: 1 <1 < N} and let A = m/de. Subtracting in
the above, we get ||k, — h;|lov < 2A ]| g]|lz. Now following [2] closely,
set h=01—7n)1—m,) -+ (1 —7yh,. Since m;h = 0,k extends (uniquely)
to a holomorphic function on U”. Since k; is holomorphic on

Q' X Ux@ 9, mwh; =0
and so 7;h, = w;(h, — h;) and therefore by Lemma 2,
I mshllox = [[7(hy — Rjlley = K {[hy — hylloy = 2KA || 9],

Now, since h — h, = — >, wh, + >, 7w;w;h, — + --- and since we get by
induction and by use of Lemma 2 that || 7; 7;, - - T; . [[ov = 2K°A || g ||,
it follows that ||h — h,|lov < BA||¢||z where B depends only on K.
Now consider G = G — Fh. G is holomorphic on U” and extends
g since G does. On QV,G = F(G/F — h)) + F(h, — h). Therefore
| Gllox < | FllxAllglls + | Fll;xBA | gl Thus G is bounded on U™
and ||G|l,» < 7]|lgllz where v = A(1 + B) || F'||,~ is independent of g.
Next we show that G does not depend on the choice of G made
at the beginning of the construction. Suppose G were another (not
necessarily bounded) extension of g to U". As above we get
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.

E_lSG/Fd

YTomi IrE — 2

But then on U x Q¥

7 _ 1 ((G=G)F

Since for 2’ € Q"*, (G — G)(-, 2’) vanishes at a,(2'), - - -, a, (2') and since
F(-,?’) has simple zeros and only at these points, (G — G)/F(-,?') is
holomorphic on U and the right hand side of (2) equals (G — G)/F
and so on U x @¥!

(3) h, — h, = (G — G)/F .

Since the left hand side of (3) is holomorphic on U x Q"!, so is the
right and consequently (G — G)/F = (1 — 7)(G — G)/F) on Q". In
the same way we see that for each 7, (G — G)/F = (1 — 7,)(G — G)/F)
on @". Therefore on Q" we have

G=GF =TT -m)G—-GF =T —m)h—F)=h—F.

Thus G — Fh = G — Fh on Q¥ and so on UY. Since the extensions
thus coincide, we have a well-defined map T: H*(E)— H=(U") such
that [| T(¢) |[v» = 7 || 9 |l

To see that T is linear, let g and § be bounded holomorphic func-
tions on E and let A be a complex number. Let G and G respectively
be arbitrary holomorphic extensions to UY. Let h, k., k, and k, h, k
be the &, and the & for G + NG, G and G respectively. Then

_ 1 S(G—l—xé)/F ac
' 271 -z

_ 1 [{ GIF 1 ( G
BRI S F

—z 21
and 7: = II(1 — 7))k, = [ — 7)](h, + Ni)) = h + Mh. Therefore

SR

dl = h, + \k,

T(g + \j) = (G + \G) — F(h + \h)
= (G — Fh) + MG — Fh) = T(g9) + \T(§) .

ExaMpPLE. Let E be the Rudin variety in U® given by E =
Z((z, — 3)(2.2, — 4)). Then E is the disjoint union of Z(z, — 4) and
Z(z,2, — £). Let ge H”(E) be given by

1

g[Z((zz—E>=0 and g[Z(zlzz—%>:1.
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Then g admits no bounded holomorphic extension to U?. For if G were
a bounded extension of g to U? we would have for z¢ U, z near 1,

{— — N

2z 2

- (L -1t G(z,0) .
<2z 2) 271 XICI:L(C—EIZ—>(C—%>(K

But as z — 1, the integral is bounded and (1/2z2) — (1/2) — 0, a contra-
diction.
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