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ON THE SUBRING STRUCTURE OF FINITE
NILPOTENT RINGS

ROBERT L. KRUSE AND DAvIiD T. PRICE

This paper studies the nilpotent ring analogues of several
well-known results on finite p-groups. We first prove an ana-
logue for finite nilpotent p-rings [a ring is called a p-ring if
its additive group is a p-group] of the Burnside Basis Theorem,
and use this to obtain some information on the automorphism
groups of these rings. Next we obtain Anzahl results, showing
that the number of subrings, right ideals, and twe-sided ideals
of a given order in a finite nilpotent p-ring is congruent to 1
mod p. Finally, we characterize the class of nilpotent p-rings
which have a unique subring of a given order.

The analogy between nilpotent groups and nilpotent rings
which motivates the results of this paper is the replacement
of group commutation by ring product. A nilpotent ring, of
course, is itself a group under the circle composition zoy =
%+ y + 2y but the structure of this group implies little about
the invariants to be studied here, as shown by the examples
in the last section of the paper.

All rings considered here are associative. The reader may verify,
however, that all results of §§ 1-3 hold without the assumption of
associativity, with the exception of (8.3). The unqualified word “ideal”
means two-sided ideal. The letter p always denotes a prime number.
If R is a ring, we denote the additive group of R by R*. The order
of a ring R, denoted |R|, is the order of the group R*; the indexr of
a subring & in a ring R, denoted [R: &S], is the index of S+ in R*.
A ring is called null if all products are 0. A ring R is called nilpotent
of exponent ¢ if all products of ¢ elements from R are 0, but not all
products of ¢ — 1 elements are 0. The characteristic of a finite ring
is the maximum of the additive orders of its elements. The smallest
ideal containing ideals & and & is denoted & + Z.

We shall need the following elementary results:

(1.1) Let R be a ring with periodic additive group. The primary
decomposition of R+ decomposes R into a ring direct sum of p-rings.

Hence, in studying finite rings, it is sufficient to consider only
p-rings.

(1.2.) Let I be a maximal ideal of a nilpotent p-ring ®. Then
R:J]=p, RS, and pRES J.
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(1.3) Let & be a proper subring of a finite nilpotent ring R.
Then there is a maximal ideal of R which contains &.

(1.4) If M and N are nonzero, nonempty subsets of a nilpotent
ring, then I is not contained in {pw| eI, ve N}

(1.5) A nilpotent ring of order p" contains an ideal of every
possible order p*, 0 < 7 < m.

2. Burnside Basis Theorem. The Frattini subring @y of a ring
R is defined to be the intersection of the maximal ideals of R, provided
such exist. Otherwise, @, =R. A set of elements of a ring R generates
a subring & if & is the smallest subring of R containing all the
elements.

THEOREM 2.1. Let R be a finite nilpotent p-ring. Then A= R/Dg
is a null ring, and A" is elementary abelian. Let [R: @yl = p*. Then
any set of elements of R which generates R contains a subset of d
elements, {0,, - - -, 0.}, which generates R. In the canonical homomor-
phism of R onto A the elements 6., ---, 0, map onto a basis of A*.
If, conversely, 0, + @y, -+, 0, + Py form a basis of A, then 6, «--, 0,
generate R.

Proof. By (1.2) U is a null ring and 2A* is elementary abelian.
Thus the images under the canonical homomorphism R — A of any
generating set for R must contain a basis for A+. Let {6, ---, 6}
be a set of elements whose images form a basis for A*. Suppose
6, ---, 0, generate a proper subring of R. By (1.3) this subring is
contained in a maximal ideal ¥, which contains ®@y. Thus

01+@m, "‘,0d+¢m

are in J/@y, which is proper in 2. This contradicts the assumption
that the images of 6, ---,6, form a basis of UA+. This completes
the proof.

REMARK 1. Theorem 2.1 implies that a finite nilpotent p-ring
contains a unique maximal subring (= ideal) if and only if it is
generated by a single element. A ring [an associative algebra] gen-
erated by one element we call a power ring [power algebra], since
the additive group of the ring [the underlying vector space of the
algebra] is spanned by the generator and its powers. Whereas a
group generated by one element is completely determined by its order,
the same is not true for power rings. In fact, even specification of
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the additive group and the exponent of the ring are not generally
sufficient to determine a nilpotent power ring up to isomorphism.
There is, of course, only one nilpotent power algebra of a given
dimension over any field. Note, finally, that all nilpotent power rings
[algebras] are finite [finite-dimensional].

REMARK 2. It is frequently convenient to use the observation
that @4 = R + pR for every finite nilpotent p-ring R. To prove this,
observe that (1.2) implies R* + pR S @y, while J = R/(R* + pR) is a
null ring and {* is elementary abelian, so the intersection of the
maximal subrings of J is 0, which means @ =0, so &3 & R* + pR.

As an application of Theorem 2.1, we shall now derive some infor-
mation about the group of automorphisms of a finite nilpotent p-ring.

THEOREM 2.2. Let R be a mnilpotent ring of order p", and let
[R: @5] = p°. Then the order of the automorphism group of R divides
pr=2@(p), where

0(p") = (p* — )(@* — p) --- (p* — p*7) .

The order of the group of automorphisms of R which fix R/Og
elementwise divides p*»—9,

Proof. This result, due to P. Hall for p-groups, follows in the
same way as § 1.3 of [2].

If & is an ideal of a ring R, we now define Aut (R; ¥) to be the
group of all automorphisms of R which leave R/J fixed elementwise.
For R a finite nilpotent p-ring we shall obtain a bound on the class
of the p-group & = Aut (R; @y). These results are analogues of
those obtained by H. Liebeck [4] for p-groups.

THEOREM 2.3. Let R be a finite p-ring, nilpotent of exponent
e, for which @y + 0. Let R/R'*' have characteristic p™i, 1 =1, ---,
¢ — 1. Then the class of & = Aut (R; Oy) does not exceed

AMR) = (z:, m) —1.
This theorem will follow by induction from the next result.

THEOREM 2.4. Let R be a finite p-ring, nilpotent of exponent
e, for which @y + 0. Let R have characteristic p™ and let N =
p™'Re. Then

(1) the ideal N is elementwise fixed by & = Aut (R; Og).
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(ii) 2 = Aut(R;N) 7s in the center of F.

(iii) 2 has order p™, where p" is the order of N, and p! =
[R: D4].

(iv) F/z is isomorphic to the subgroup & of automorphisms
Srom Aut (R/N; @y/N) which can be extended to R.

The proof of (2.4) requires three lemmas, the first of which is
obvious.

LEMMA 2.5. Let R be a ring and a an automorphism of R. If
{6,, ---,0,} is a generating set for R, then a is completely determined
by the values of 05,1 <t d. If & is an ideal of R then ae Aut
R ) if and only of 65 — 0,1 <1 < d.

LEMMA 2.6. With R as in (2.4), if € F and 0 R for some
1, 11<e—1, then 65 — 0 € pR* + R+,

Proof. The lemma is true for ¢ =1, since @5 = pR + R* and
ac Aut (R; O5). Assume the result for + <j. Let #e®Ri. Express
f as a sum of products

0 =27,

where the 7, e R, p,eR. Then 6« = 3 wiof = 3, (w, + 0,)(0, + T,),
where, by induction hypothesis, g, € pR— + R/ and 7, € pR + R:. Thus
0 — 0 =3, (0,0, + 7,7, + 0,7,) € PRI + R

LEMMA 2.7. With the motation of (2.4), every automorphism
e 2 leaves Dy elementwise fized.

Proof. For any 6ecR,6°— 6eN. Thus from pN =0 follows
0 = p(6° — 0) = (pb)* — pb, so 2 fixes pR elementwise. Similarly,
since MR = AN =0, 2 fixes R*, hence Py = R* + pR, elementwise.

Proof of (2.4). (i) Suppose N and ae.Z?. Then 6§ = p™~"
for some e R, and so, by (2.6),
0 — 6 = p" (¥ — ) ep" (R + R) = 0.
(ii) Let 6eR,aec &”, and {e 2. Then

(0%)° = (6 + p)* for some pc Dy
=06+ o by (2.7)
=06+ p+ o for some geN,

while
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(6= = (6 + 0)* = 6 + olby ()] =0+ 0+ p.

Thus af = a.
(iii) Let 4, ---, 0, generate R, and -, - - - v, be arbitrary elements

of . Then the mapping
(*) 0i-"0i+"lriy7::1s"°,dy

defines an automorphim { € 2. But every automorphism { € 2~ induces
a mapping of the form (*). Thus | 2 | = p™.

(iv) Let awe & Defining (6 + N)* = 6% + N for all e R gives,
by (i), a homomorphism f of & into & If (6 + W) =60 + N, all 6,
then 9 — 0 e M, so e 2. Thus the kernel of fis 2. Now consider
an automorphism 8’ ¢ &’ Let £ be an extension of B to R, Be. A~
Then fBe&’, and for 6eR, (@ + N)7* =60+ N =0 + N so the
homomorphism f is onto &, This completes the proof of (2.4).

Proof of (2.3). MR) = 0 implies ¢ = 2 and m, = 1, hence @y =0,
contrary to assumption. If MR) = 1, then either e = 2,m, = 2, or
else e = 3, m, = m, = 1. In either case, for N = p™ "R, N = @y,
Hence, by (ii) of (2.4), & is abelian. We now use induction on AM(R).
Let = p™7'R*'. By (2.4) 27 = Aut (R; N) is central in &7 and
|2 is isomorphic to a subgroup « of Aut (R/N; &y/N). Since
MR/N) = AMR) — 1L < MR), by induction hypothesis the class of < does
not exceed A(R/MN). Thus the class of & does not exceed MR) =
MR + 1.

REMARK. The bounds given in Theorems 2.2 and 2.3 are at-
tained by the free nilpotent rings of characteristic p with two or
more generators.

3. Enumeration results. The results of this section depend upon
the following lemma, which is essentially the enumeration principle of
Philip Hall ([2], Th. 1.4).

LEMMA 3.1. Let 11 be a finite p-group, _#Z the set of maximal
subgroups of W which contain a fixed subgroup B = N. Let & be
any class whose members are subsets of N, and let each member of
& be contained in at least one member of _Z . Let w(M) be the
number of members of & which are contained in M for each Me _7.
Then the mumber of members of & is congruent to >,. ,n(M)
(mod p).

THEOREM 3.2. Let R be a nilpotent ring of order p*. Let &
be a subring of R, of order p°. Then for s <t < n, the number of
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subrings of R of order p' which contain & is congruent to 1 (mod p).

Proof. If & =R, the result is trivial. Suppose & = R. We
proceed by induction on n. Let _# be the set of maximal subgroups
of R+ which contain B+ = (& + R)*. By (1.2) and (1.3), _# is non-
empty. Letting & = {&} in (3.1), we see that the number of members
of _# is congruent to 1 (mod p). If ¢ = mn, the result is trivial.
Suppose t <n. Let Z ={E|6< %, || =9, < is a subring of R}.
By (1.3) and (1.2) each T e % is contained in some M e _# Let n(M)
be the number of members of & contained in M, for each Me
By induction, n(M) =1 (mod p). Hence, by (3.1), the number of
members of & is congruent to 1 (mod p).

It is well known that the number of normal subgroups of a given
order in a finite p-group is congruent to 1 (mod p). For rings there
are several analogous results.

THEOREM 3.3. Let B be a right module of order p* of a wilpotent
ring R. The number of submodules of B of order p*, 0 <k < n, s
congruent to 1 (mod p).

THEOREM 3.4. Let X be a right ideal of order p™ of a milpotent
ring R of order p*. The number of right ideals of R of order p*
which contain F (which are contained in ), m<k<n (0 k < m),
1s congruent to 1 mod p.

THEOREM 3.5. Let ¥ be a two-sided ideal of order p™ of a mil-
potent ring R of order p". The number of two-sided ideals of R of
order p* which contain I (which are contained in X), m=k=n
0 =k < m), is congruent to 1 mod p.

The proofs of these results are similar to that of (3.2).

REMARK 1. No analogue of the theorem of Kulakoff seems to hold
for nilpotent rings. For example, the rings with basis «, 8, such that
pa=pB=0a = — B =pa, and af = Ba = 0, have 3p + 1 subrings
of order p* if p %= 2, and 5 if p = 2.

REMARK 2. Note that the Anzahl theorems fail to hold for non-
nilpotent p-rings. For example, consider the ring R = R, P NR,, where
R, is generated by an element « of characteristic p with a* = «, and
R, is generated by an element 8 of characteristic » with 5= 0. Then
R, and R, are the only two subrings (and ideals) of order p, and 2 =1
(mod p) for any prime p.
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4. Nilpotent p-rings with only one subring of a given order.
It is well-known that a finite p-group ®& which contains only one
subgroup & of a given order, 1+ &+ ®, must be cyclic, or else
|&| =2 and ® is generalized quaternion [1; 131-132]. This section
obtains a characterization of nilpotent rings and (associative) algebras
satisfying the analogous condition. Although the algebra result could
be obtained as a corollary to the ring result, we shall give an indepen-
dent proof to illustrate the general ideas used while avoiding much
detail required for the ring proof. The result for algebras is

THEOREM 4.1. A wnilpotent algebra W over a field § contains
only one subalgebra &S of some given finite dimension, 0 = S = 1, if
and only if one of the following conditions holds:

(1) dim& =dimU — 1 and U is a power algebra.

(2) dim& =1,dimU =3, W*=6,1*=0, and p €, ¢*= 0 tmplies
pe@.

REMARK 1. An algebra 11 such that dim 1> =1,1°=0, and pc U,
@* = 0 implies ol = Up = 0, is called “almost-null.” It may be of
interest to note that a nil algebra has the property that every sub-
algebra is an ideal if and only if the algebra is almost-null (see Kruse
[3]). Thus almost-null algebras seem in one way analogous to the
quaternion group of order 8, which plays a key role both in the
determination of p-groups with a unique subgroup of order p, and in
the determination of groups in which all subgroups are normal.

REMARK 2. The classification of the finite-dimensional algebras 11
over a field § satisfying (2) of (4.1) is closely related to the study
of quadratic forms over . Let U have a basis {a, a,, ---,a,, B}
with 8 e 1%, and choose a;; € F, 1 < 4,7 < n, so that a,a; = a;;8. Then
condition (2) requires that the quadratic form

have no nontrivial zero (x,,,, --+,x,). Let us note that when § is a
finite field, then every quadratic form in three variables has a non-
trivial zero, so if § is finite then dim Ul = 8. On the other hand, over
each finite field there exists a quadratic form in two variables with
no nontrivial zero, so algebras satisfying (2) always occur when &
is finite.

Finally, we note that an arbitrary almost-null algebra must either
be null, or isomorphic to the direct sum of a null algebra and either
a power algebra of dimension 2 or an algebra satisfying (2).

Proof of (4.1). It is easy to check that nilpotent algebras satisfy-



110 ROBERT L. KRUSE AND DAVID T. PRICE

ing (1) or (2) have unique subalgebras of the dimensions indicated.
For the converse we shall first establish two lemmas.

LEMMA 4.2. If U is a nilpotent algebra of dimension 4, over
a field §, then 1 has more than one subalgebra of dimension 2.

Proof. If dim11® = 3, then 11 is a power algebra, generated by
one element a. Then all subalgebras generated by a* + xa® for different
xe® are distinet and all have dimension 2. If dimU* < 1 then U/1*
is null, and U contains more than one subalgebra of dimension 2. Thus
we can suppose that dim11* = 2, and 1* is the only subalgebra of U
of dimension 2. It follows, for any pell, p ¢ 1%, that ¢* + 0. Since
dim 11* = 2, there are elements «, 81l which are linearly independent
mod 1%, so {«, B, a? &’} is a basis for 1. Choose z, y € F so that af =
xo? + ya® and let 8/ = B8 — 2a — ya>. Then £’ 1% and af’ = 0. Let
B*=ua’ +va’,u,veF. Then 0= (ap)B = ua’sow =0. Then 8" =
0 and 5’ el1?, a contradiction.

LeMMA 4.3. Let U be a nilpotent algebra with a unique sub-
algebra & of dimension 1, and let pell. If o* =0 then pe&. If
P e, then 0 # @’ @,

Proof. If ¢* =0 then either » = 0 or ¢ generates a subalgebra
of dimension 1, which by hypothesis must be &. Thus p € &. Suppose
9 ¢®, and let e be the natural number such that ¢* = 0 but @+ 0.
By the above argument ¢ = 3. If e =4 then (%) =0 so p**c®.
But & is an ideal, so nilpotence of 1 implies IS = 0, so pp** =0,
contradicting the definition of e. Thus e =3. Then (¢°* =0 so
0+ p'c@.

Proof of 4.1, continued. Let U be a nilpotent algebra with a
unique subalgebra & of a given dimension, 0 # & = U. If dimU =
dim & + 1, then U is a power algebra, and condition (1) of the con-
clusion holds. If dimUl = dim & + 2 = 4 then, by the algebra analogue
of (1.5), U contains a subalgebra B with dim®B = dim & + 2, and an
ideal ¥ with dim & = dim& — 2. Then the algebra B/J fails to
satisfy (4.2). Hence we can suppose dim& = 1,dim U1 = 3.

Next we show that * = &. Choose ¢, vell. By (4.3), ¢, ¥3
and (p+ ) are in &. Thus ¢y +ype@. Hence 0 = p(py + @) =
Vo, since p*e€ & and SU = 0. Thus (py)* =0, so by (4.3) pyre@.
Thus M2 S &. 1= 0 is trivial, so 1’ = &. (4.3) now implies directly
that 1 satisfies (2) of (4.1). Thus the proof is complete.

We now turn to the analogous problem for rings. We shall
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establish the following:

THEOREM 4.4. A nilpotent p-ring R contains only one subring
& of a given order, 0 =& %= R, if and only if R and &S satisfy one
of the following conditions:

(1) R+ is eyclic or quasi-cyclic.

(2) [R:S]=p. R is a power ring.

(3) |S|=p. Let U={peR|pp=0}. Then U has rank 2 or
3, =6, and pcll, p* = 0 implies pS. There is, moreover, an
ideal € of R such that R=€ + U, ENU =&, and €* is cyclic or
quasi-cyclic.

(4) |8 =92 |[R| =20 R" has type (2,2), and, if pecR with
pp # 0, then pp® =0 and ¢° is not a natural multiple of .

REMARK. A description of the “exceptional” nilpotent p-ring R
satisfying (3) or (4) may be completed in terms of generators and
relations as follows:

(3) Let & be generated by an element . Then po = 0 and
oR =Ro =0. If €* is quasi-cyclic, then ER = RE = 0. The subring
11 satisfies one of the following conditions:

(a) U* has a basis ¢, 8, and 5* = 0.

(b) U* has a basis o, 8, 8.. Let B,8; = B;;0 for suitable
integers B;;,t,7 =1,2. Then B, X*+ (B, + By)XY + B,,Y* =0 (mod
p) for integers X and Y implies X = Y = 0 (mod p).

(4) Let R* have a basis @, and «,. Then a,a; = A;;pa, + B;;pa,
for suitable integers A;;, B;;, ¢,7 = 1,2, and

B, X’ + (Ay + By + Bu)X* + (B + A + 4:)X + A4, = 0 (mod p)

has no integer solution X.

Since, over the field of p elements, there are both quadratic forms
in two variables which have no nontrivial zeroes, and irreducible cubic
polynomials, rings satisfying (3) and (4) occur nontrivially for all
primes p.

Proof of 4.4. It is easy to see that nilpotent p-rings satisfying
{1)-(4) have unique subrings of the orders indicated. An infinite nil-
potent p-ring which contains only one subring & of a given (finite)
order clearly satisfies one of (1)-(4) if and only if each of its finite
subrings which properly contains & also does. Thus for the converse
we consider only finite rings. As a notational convenience, let Z7(n, s)
denote the class of nilpotent rings of order »” which contain only one
subring, generically denoted &, of order p°. If Re Z'(n,n—1), then
the basis theorem (2.1) implies R is a power ring. The rings in Z'(n, 1)
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are studied in § 5. To characterize the rings in Z'(n,s),1<s<n—1,
we first determine those in %' (4, 2), (5, 2), and % (5, 3) and then
proceed by induction. Several steps of the proof are separated as
lemmas.

4.5 Let R be a nilpotent p-ring for which R has type (n, 1).
Then, for 1 < i < n, R has exactly p + 1 ideals of order p'.

Proof. For1<i<n+ 1,8, ={pech|pp =0} is an ideal of
R of order p'. For 1 <1< n,C, = {p"‘p|pecR} is an ideal of R of
order p’. Hence R has at least two, so by the Anzahl theorem (3.5)
at least p + 1, ideals of order p’,1 < 7 < n. But these exhaust the
subgroups of R* of order p‘.

4.6  Suppose R is a power ring, Re Z'(n,s),1 <s<n—1. Then
R+ 4s cyclic.

Proof. First suppose s = 1. Let R be generated by an element
a, and let @ = pR + R, Let M = {pec@|pp =0,0pe¢S}. If M is
nonempty, then by (1.4) there is some 0 € It such that dac&S. From
oe @ follows 60 = pyr + a&, some +, £cR. Then §* = o(py + af) = 0,
S0 0 generates a second subring of order p. Thus IN is empty and
@+ is cyclic. By (2.1), [R: @] = p. If R+ had type (= — 1,1), then
O ={pecR|pp =0}, so &+ would not be cyclic. Hence R+ is cyclic,
as desired.

We now proceed by induction on s. Suppose s >1. Let & be an
ideal of order p of R. Applying the induction hypothesis to the power
ring R/F we find that (R/I)* is cyclic. Hence either R+ is cyclic or
has type (n — 1,1). But type (n — 1, 1) is excluded by (4.5).

4.7 If Rez 4, 2), then rank R+ < 2.

Proof. R+ cannot have rank 4 by Lemma 4.2, where § = GF(p),
the field of p elements. Suppose R+ has rank 3, so R+ has type
2,1,1). Let T ={peR|pp =0}. Since |T|= p°, T contains &, the
unique subring of order p®. It follows by (2.1) that T is a power
algebra over GF(p), and so R* has a basis of the form {¢p, ¥, v*} where
@ has characteristic p% « and +* have characteristic p, and +* = pop.
Since 4*e R* and e R, |R:| = p°. By (4.6) R is not a power ring,
so |R*| < p’. Thus R* =&, and &* has a basis {?* +°}. Hence there
are integers A, B such that gy = Ay*+ By®. Let ¢’ = ¢ — Ay — By,
Then ¢’y = 0. Let ¢ = Cy*+ D+* for suitable integers C, D. Then
0 =g (@) =" =Cy* so C =0 (mod p). Then ¢ = Dpyp’, so ¢
generates a second subring of order p?. Thus R+ has rank at most 2.
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4.8 If Rez (5,s),s = 2,38, then R+ is cyclic.

Proof. Suppose rank R+t = 3. Then, for s = 2 (resp. for s = 3),
we can find a subring 1 of order p* (resp. an ideal & of index »*)
with rank 11t = 8 (resp. rank (R/J)* = 3). This is impossible by (4.7),
so rank R+ < 2.

Suppose rank R* = 2. By (4.5) R* has type (3,2). Let a and
B, with p’a = p*8 =0, be a basis for R*. Since pa and {p’«, pB}
generate distinct subrings of order p°, we have s =3. Then pR = &.
Moreover, R* = &, since otherwise R is a power ring, which is excluded
by (4.6). Let a® = Apa + BpB, 8* = Cpa 4+ DpB,C %= 0 (mod p), aB =
Epa + FpB. By replacing a by a’ = @« — EC~'8, where C~'C =1 (mod
%), we may assume that £ = 0. Then (a*)8 = BCp*«, while a(aS) = 0.
Thus B = 0 (mod p), and a generates a second subring of order '

Proof of (4.4), continued. If ReZr (4, 2), then by (4.5) and (4.7)
either R+ is cyclic or has type (2,2). If R+ has type (2, 2) and, for
some peR, pp # 0 and ¢* is a multiple of o, then both pR and the
subring generated by ¢ have order p*. Thus (4) of (4.4) holds.

Suppose Re Z(n,s) with n >5,1<s<n—1. If s=2 and rank
R+ = 2, we can find a subring of order »° and rank = 2, which con-
tradicts (4.8). For s > 2 we proceed by induction on n. Let & be
an ideal of R of order p. By induction hypothesis (R/J)* is cyclic.
R+ cannot have type (n — 1, 1) by (4.5), hence R+ is cyclic.

5. Nilpotent p-rings with one subring of order p. In this
section we shall show that a finite nilpotent p-ring R which contains
a unique subring & of order p satisfies condition (3) of Theorem 4.4.
Let & be generated by an element o. Then po = 0 and R = Ro = 0.
Small Greek letters will denote elements of R. For ease of reference
we restate the hypothesis that & is the only subring of order p.

51 If pp =¢* =0, then pe.

5.2 Suppose p’p =0 and p"'p¢S,a>1. Then a=1 and @€,
@* # 0.

Proof. By (5.1), (p"'¢)* = 0. This, with p°gp* =0, gives 2a —
2<a, so a=1. Then ¢ together with & generates an algebra over
GF(p), so (4.3) implies p*€ &, ¢* = 0.

LEMMA 5.3. Let a,, a,, a,, and b be elements of a ring such that
pb =0 and there are integers A;;, 0 < A; <p,1,75=1,2,8, such that
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aa; = A;;b. Then there exvist integers 0 < X, < p,1 =1, 2,3, not all
0, such that

(X + Xa, + X,a,)) =0.

Proof. This is equivalent to the well-known fact that a quadratic
form in three variables over the field of p elements represents 0 non-
trivially.

LEMMA 5.4. Let U={pecN|pp=0}. Then WSS and one of
the following conditions holds, according to the rank of U+:

(1) U=6.

(2) U* has a basis 0,5, and 5* = 0.

(3) U* has a basis g, 8,7, and (XB + Y7y =0 for integers X
and Y tmplies X = Y =0 (mod p).

Proof. Since & = U, U is an algebra over GF(p) with a unique
subalgebra of dimension 1. The result follows directly from (4.1) and
(5.3).

In case pR =0 we have R =1, and thus N satisfies (3) of (4.4).
If pR = 0, then, by (5.2), R+ = €+ + U where € is a cyclic p-group
with €] > p, and €+ N U+ = &7, The rest of the proof is devoted
to showing that (R*)* < pC+. This implies that the set of elements of
€+ form a subring €, and thus (3) of (4.4) holds. Let « be a generator
of €*. The proof that (R*)* & pE~ is divided into cases depending on
the location of a? and on the rank of 1%, which of course equals the
rank of R+,

If 1" has rank 1, then € = R, so (1) of (4.4) holds. Suppose U~*
has rank 2, with basis g,8. If a?ep@+, then (R®)* has rank 2 so
(4.6) applies. Thus a?c p€+. By (5.4) W* S &, and & S pC+. Finally,
aBe® and Baec S by the nilpotence of «.

Thus we may assume that U+ has rank 3, with basis o, 8,v. If
(R~ has rank 1, we are done. If (R*)* has rank 3, then (4.6) applies.
Thus assume (R*)* has rank 2. Without loss of generality we may
asssume S e R To complete the proof we make use of the following
remark:

5.5 Under the above assumptions, if € R, pp =0, and o8 =0,
then pc@.

Proof. Since (R%)* has rank 2 and g, 8¢ R?, it follows that ¢ =
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Xo + YB, some integers X and Y. Thus 8 = Y5 Since B* = 0,
Y =0 (mod p). Thus pe@.

We now continue the proof. Since 52€&,0 = aB* = (aB)B so by
(5.5) aBfe®. Dually Bac&. By (6.4) WS S. Since 74e€S,0 =
a(vB) = (av)B so, by (5.5), aye®. Dually yaeS. Since afe &, 0=
a(aB) = a*B. Thus RSB = 0. Choose any @cR:. Since (R*)* has
rank 2, and Be R, S & R, we can write ¢ = pX,a + X,8 for some
integers X, and X,. Then 0= 98 = (pX,& + X,0)8 = X,5*. Since
B+ 0,X,=0 (mod p). Thus pepC+ so (R*)* has rank 2.

6. Examples related to circle groups.! Every Jacobson radical
ring is a group under the circle composition

voy =a+y+ay,

and every subring [two-sided ideal] of the ring is a subgroup [normal
subgroup] of the circle group. In general, however, not all subgroups
under circle are subrings, and normal subgroups, which may or may
not be subrings, need not be ideals. In fact, a subgroup under circle
is a subring if and only if it is also a subgroup under addition. We
shall consider some examples which show that one cannot tell from
the structure of the circle group alone which subgroups will or will
not correspond to subrings.

6.1 A fully invariant subgroup which is not a subring. Let
R be the ring generated by an element ¢ of characteristic 8 with
@* = 2p. The circle group € of R is abelian of order 8 and type
(2,1). The fully invariant subgroup of € of elements of orders 1
and 2 in € consists of 0, 3p, 4p, and 7p. These elements do not
form a subring of HR.

6.2 Elementary abelian groups. If R is a radical ring whose
additive and circle groups are elementary abelian p-groups, then all the
additive and circle subgroups of a given order in R are indistinguishable
up to automorphisms of the groups. We shall, however, give examples
of such rings in which the subring structure varies substantially.

Suppose R is a radical ring such that R+ is an elementary abelian
p-group. Then the circle group € of R is elementary abelian if and
only if R is commutative and ¢* =0 for all pe R. To prove this
consider € as the multiplicative group of elements 1+ ¢ where pe R
and 1 is an identity adjoined to R. Observe that pp = 0 implies

! The authors wish to thank the referee and editor for encouraging the inclusion
2of this section.
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A+ o2 =1+ ¢~ all peR.

A ring whose additive group is an elementary abelian p-group may
be considered as an algebra over GF(p). We now describe some examples
of rings R whose additive and circle groups are elementary abelian.
We denote a basis for R as an algebra over GF(p) by {p,, ---, @,}.

(a) Null algebra, R = 8,. Define p;p; =0foralli,j=1,...,m.
Every subgroup (under + or o) of R is an ideal.

(b) Power algebra, R =B,. Assume n < p. B, is the unique
power algebra of dimension n over GF(p). B, may be defined by
pr=p,1<k<n,o'"'=0. By Theorem 2.1, B, contains only one
subring of order p*»*. For 1 <k <n — 2,8, contains only one ideal
of order p*, although more than one subring of order p*.

(e) Direct sum. R=9B,PD B.,_., where 0 <m <n and m < p.

(d) Almost-null algebras. Assumel <n <3and p=2. R=1,
where 11 is a commutative ring whose structure is given in Lemma 5.4.
3 of 4.4. 1 is called “almost-null,” and its structure is typical both
of nilpotent rings which have a unique subring of order p, and of
nilpotent algebras in which all subalgebras are ideals.

6.3 Remarks on commutative radical rings. It is easy to find
examples of commutative radical rings R in which not every subring
is an ideal. If € is the circle group of R, then € contains normal
subgroups which correspond to subrings but not ideals. If, on the
other hand, we start with the abelian group €, then the null ring
whose additive group is € also has circle group €, and every subgroup
corresponds to an ideal. Every abelian group, moreover, appears as a
circle group in this way.

In studying nilpotent rings one soon notices that the fruitful group
analogy is between ring product and group commutation. Under this
analogy an abelian group corresponds to a null ring, the center of a
group to the annihilator of a ring, the lower central series of a group
to the powers of a ring, etc.

6.4 Three special rings. We conclude by describing three nil-
potent rings R of order 16, each of which has an abelian circle group
of type (2,1, 1), but which differ in several other properties.

R = A is generated by elements «,, a,, a;, a,, each of characteristic
2, such that a2 = a, and a,a; =0 if 1= 1 or if 7 = 1.

R = B is generated by elements B, 5., B:, such that char B, = 4,
char B, = char B; =2, Bt = 2B, £ = B, BBy = BBy = 28, and BB, =
:3261 = Bugs = :83:8x = Bg =0.

R = € is generated by elements v, and 7, of characteristic 4 such
that v = v, 7,7, = 7.7, = 27, and 7 = 27,.
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Value for

Invariant A B €
Exponent of R: least integer ¢ with R* =0 3 4 5
Number of generators required (see (2.1)) 3 2 1
Number of subrings (ideals) of order 8 7 3 1
Number of subrings of order 4 11 3 3
Number of subrings of order 2 7 3 3
Number of ideals of order 4 11 3 1
Number of ideals of order 2 7 1 1
Order of R? 2 4 8
Order of R modulo its annihilator 2 8 8
Additive group type 1,1,1,1) (2,1,1) (2,2
Order of automorphism group of R 192 8 4
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