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MINIMAL T7,-SPACES AND MINIMAL T,-SPACES

RoLAND E. LARSON

The family of all topologies on a set is a complete, atomic
lattice. There has been a considerable amount of interest in
topologies which are minimal or maximal in this lattice with
respect to certain topological properties, Given a topological
property P, we say a topology is minimal P (maximal P) if
every weaker (stronger) topology does not possess property P,
A topological space (X,.7 ) is called a Tp-space if and only
if [«]’, (the derived set of [x]) is a closed set for every x in
X [1]. It is known that a space is T if and only if for every
2 in X there exists an open set G and a closed set C such that
[x] =GnC[9]. The purpose of this paper is to characterize
minimal 7, and minimal T,-spaces as follows: A T,-space is
minimal 7T, if and only if the family of open sets is nested
and the complements of the point closures form a base for
the topology. A Tp-space is minimal 7', if and only if the
open sets are nested. These characterizations prove to be
useful in gaining other results about minimal 7, and minimal
T ,-spaces.

The following are examples of characterizations of some minimal
and maximal topological spaces. A space is mininum 7T, if and only
if the closed sets are precisely the finite sets. A T,-space is minimal
T, if and only if every open filter which has a unique cluster point
converges to that point [4]. A T,-space is minimal T, if and only if
it is semi-regular and absolutely H-closed [6]. A T..-space (Urysohn
space) is minimal T,, if and only if for every two open filters &, and
Z, such that there exists a closed filter . &, with #, ¢ &, ¢ %, and
such that £ has a unique cluster point, it follows that .#; converges
to that point [5]. A T.-space is minimal T, if and only if every
regular filter (a filter which has both an open filter base and a closed
filter base) which has a unique cluster point converges to that point
[3]. A space is minimal T, (Tychonoff) and minimal T, if and only
if it is T, and bicompact [2]. A space is maximal bicompact if and
only if the bicompact subsets of the space are precisely the closed
subsets of the space [8].

In [8] it is mentioned that there exist minimal T,-spaces which
are not bicompact, also the fact that in a minimal T,-space every
open set is dense was known to N. Symthe and C. A. Wilkins. At
the time I wrote this paper, I was not aware of any other mention
of these spaces. However, since that time, a recent paper by Ki-Hyun
Pahk has been brought to my attention [7]. By a different sequence of
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lemmas, he obtained the result given in Theorem 1, but his character-
ization of minimal T,-spaces contains an unnecessary somewhat cum-
bersome condition. The results of Lemmas 1 and 2 as well as Theorems
3 through 7 are not discussed in Pahk’s paper.

Lemma 1. If (X, 97) is a T, or T, topological space and B is
an open set in 7, then the family .7 (B) = [G:Ge .7, GC B or BCG]
18, respectively, a T, or T, topology on X.

Proof. One may easily see that .77 (B) is a topology on X by
making the following observations. @ < B and BC X imply that &,
Xe 7 (B). If G, and G, are elements of .77 (B), then G, N G, .7 (B)
since either both G, and G, contain B, in which case BC G, N G,, or
one of the sets G,, G, is a subset of B, in which case G, N G,C B.
If [G,:ae A] is an arbitrary family of open sets in .7 (B), then
U[G.: @€ A] is an element of .7 (B) since either every G,C B, in
which case U[G,:ae A]C B, or B is a subset of some G,, in which
case BC U[G.: a € A].

To see that . (B) is T, if .7 is a T, topology on X, we consider
the following three cases.

Case 1. If z,ye B, and there exists an open set Ge .2 such that
reG and y¢ G, then xeGNB,y¢GNB, and GN Be .7 (B).

Case 2. If x,y¢ B, and there exists an open set Ge .2 such that
zeG and y¢ G, then xeGUB,y¢GU B, and GU Be .7 (B).

Case 3. If xe B and y¢ B, we are done, since Be.7 (B).

Similarly, we see that .7 (B) is T, if .2 is a T, topology on X.

Case 1. If xe B, then since .7~ is T,, there exists an open set
Ge .7 and a closed set C such that [x] = GNC. Then GN Be .7 (B)
and ~CU Be .7 (B); therefore, C U ~B is closed with respect to .7 (B)
and

(GNB)N(CU~B)=(GNBNC)UGNBN ~B) = [a].

Case 2. If x¢ B with G and C as before, then G U Be .7 (B) and
~C U Be .77 (B); therefore, C N ~B is closed with respect to .7 (B) and

GuBNCnN~B)=GnNCN~BUMBNCN ~B) =[a].

LEmMmA 2. If (X, 97) is a topological space, then the following
three conditions are equivalent:

(1) The open sets in the topology are mested.

(2) The closed sets in the topology are mested.

(8) Finite unions of point closures are point closures.

Proof. It is clear that the first and second conditions are equiva-
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lent. It is also clear that the second condition implies the third since
given a finite number of nested point closures, their union is simply
the largest. In order to see that the third condition implies the
second, assume that C and D are closed sets in (X, 7). If C=+# D,
then either C~ D # @ or D~ C # @. Since these two cases are
symmetrical, we will assume C ~ D # ¢ and show that this implies
DcC. Choose xecC ~ D,yeD. If [Z] U [y] = [Z], then either z € [Z]
or ze[y]; but yc[z] and x € [z]; therefore, [Z] = [Z] or [Z2] = [y]. How
ever, if [Z] = [7], then [Z] C [¥] < D and this is a contradiction since
xeC ~ D. Therefore, [z] = [Z], and [¥] < [Z] = C, which implies that
yeC and Dc C. Therefore the proof is complete since for any two
closed sets, one of them must be contained in the other.

THEOREM 1. A T, topological space, (X, 77), is minimal T, if
and only if the family [~[Z]: x € X] s a base for .7~ and finite unions
of point closures are point closures.

Proof. Necessity: Assume (X, .7 ) is a minimal T,-space. If there
exist open sets A and B in .7 such that AZ B and B¢ A, then by
Lemma 1, 9 (B) is a T, topology on X, .7 (B)c .7, and A¢ 9 (B);
but, this contradicts the minimality of .&~. Therefore, for every two
open sets in .77, one is contained in the other, and by Lemma 2, finite
unions of point closures are point closures. To see that the family
[~[Z]: € X] is a base for .77, we observe that since .7 is a nested
family, [~][Z]: x € X] is closed under finite intersections, so it is a base
for some topology on X, say .7 *. 7 * is clearly T, since all the
point closures are distinct. Therefore, since 7 *c .7 and 7 is
minimal T,, 7 * = 7.

Sufficiency: Assume (X, .7") is a T,-space such that .7 is a nested
family, and [~[x]: € X] is a base for 7. Assume T*C T, where
T* is a T,-space. Let [Z]* be the closure of [¢] with respect to the
topology .7 *. If there exists an = € X such that [Z] = [Z]*, choose y € X
such that y € [Z]* and y ¢ [Z]. Then, since .7~ and .7 * are T,-spaces,
7 *C 7, and .7 is nested, the following inclusions hold: [Z] C [y] ©
[7]* c [z]*. However, since [Z]* is the smallest closed set in (X, 7 *)
which contains ¢, and z € [§]*, we have [Z]* = [g]*. This contradicts
the fact that .7 * is T,. Therefore, [Z]* = [Z] for every ze X and
7 * = 7 since [~[Z]: v X] is a base for .7~. This completes the
proof that .7~ is minimal T,.

THEOREM 2. A T, topological space, (X, 7), is minimal T, if
and only if finite unions of point closures are point closures.

Proof. The argument for necessity is identical to the argument
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given in Theorem 1.

Sufficiency: Assume (X, .o) is a T, topological space such that
7 is a nested family. Assume .7 *C 9, where .7 * is a T,-space.
If [2]'* is the derived set of [x] in .7 *, then since every T,-space is
T,, and [Z] = [#]’ U [¢], where [2]' N [x] = @, we can apply the same
argument given in Theorem 1 to conclude that [Z]* = [Z] and [z]* =
[#]" for every xe X. If o * # 7, then there exists a closed set C
in (X, 97) such that C is not a point closure, or a derived set of a
point, or the intersection of these. Therefore, the following inclusion
is proper: Cc C* = N[D: D is closed with respect to .7 *, Cc D].
Since o * is T, it follows that C* ~ C contains exactly one point,
say ®. In fact, since C* is closed with respect to .7 *, and there can
be no smaller closed set in (X, .9 *) which contains z, we have C* =
[Zz]* =CUl2] =[z]"*U[z]. However, since CN[x]= 2@ and [2]"*N][z] =
@, it follows that C = [z]'*, which is a contradiction, since we as-
sumed that C was not the derived set of a point. Therefore, o * =
7, and & is minimal T,.

ExaAMPLE 1. Let X be the real numbers, let

S ==, w0 2eX]U[(—o,x]i2e XU [0, X].

ExaMPLE 2. Let X=[a,b,¢], let &~ =[@,[b],[c],[b,¢], X]. Then
[@] = [a], [b] = [a, b], and [¢] = [a, c].

In general, neither of the two conditions of Theorem 1 imply the
other. Example 1, as well as being an example of a minimal T',-space,
is an example of a T,-space in which the open sets are nested, and
yet it is not minimal T,. Example 2 is an example of a T,-space in
which the complements of the point closures form a base for the topology
and yet it is not minimal T,. However, if X is a finite set, it is easy
to show that the T, and T, axioms are equivalent, and the following
combined version of Theorems 1 and 2 is easily proved.

COROLLARY 1. If X is a finite set, and (X, <) is a T, topological
space, then the following four conditions are equivalent:

1) X, 9) is minimal T,.

2) (X, 9) is minimal T,.

(8) Finite unions of point closures are point closures.

(4) Every nonempty closed set in (X, . ) is a point closure.

Requiring that the open sets be nested is a severe restriction on
a topological space, as can be seen from the following theorem, which
applies to both minimal 7, and minimal 7,-spaces.
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THEOREM 3. If (X, .27) is a topological space in which the open
sets are mnested, then (X, o) 1s connected, mormal, and every open
set in the space is dewse. Furthermore, if X has more than one
element, (X, ) is not regular and mot a T,-space.

Proof. Each part clearly follows from the nestedness of ..

ExaMPLE 3. Let X be the real numbers, let

==, e XU [D, X].

ExamMPLE 4. Let X be the “half-open” interval on the real line,
(0,1]. Let v =[(0,2):2e X]U[@, X].

Investigations in some of the other separation axioms have led to
results such as the fact that every minimum T,-space, minimal T,
space, and minimal T,-space is bicompact [2]. It has been shown that
there exist maximal bicompact spaces which are not T, as well as
minimal T.-spaces which are not bicompact [8]. It has also been shown
that there exist minimal T,,-space and minimal T,-spaces which are not
bicompact [5][3]. Examples 1 and 3 are respectively examples of a
minimal T,-space and a minimal T,-space which are not bicompact.
Example 4 is an example of a minimal T, topology on an infinite set
which is bicompact, and a similar example can be given for minimal
T,-spaces. Note that in Example 4, [1] is a closed set. This leads to
the following theorem.

THEOREM 4. If (x,.97)ts a minimal T, or minimal T, topological
space, then the two following conditions are equivalent:

1) (X, 9) is bicompact.

(2) There exists exactly one singleton which is a closed set.

Proof. To show that the first condition implies the second, assume
(X, 27) is bicompact. Let [G,:a € A] be an open cover for X. This
can be reduced to a finite subcover [G,.:% =1,2, .-+, n]. However,
since the open sets are nested and since X is the union of a finite
number of these nested open sets, it must be equal to one of them.
Therefore, every open cover of X must contain X as one of the open
sets in the cover. Let C = X ~ (U [~][Z]: ze X]). Since ~ [7] # X
for any ze X, [~[Z]: x € X] cannot be a cover for X and therefore,
C # @. C contains exactly one point since .« is T,, and C is closed
since it is the complement of an open set. Since the closed sets are
nested, it is clear that there cannot exist two closed sets consisting
of one point each.
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To show that the second condition implies the first, assume that
(X, .97) contains a singleton closed set, which implies that the only
closed set not containing x is @. Therefore, the only open set con-
taining « is X, and given any open cover of X, one of the open sets
mst be X itself, and (X, .77) is bicompact.

The behavior of filters is of significant importance in minimal T,
Ty Tsy Ty, and T,-spaces, as is partially seen in the introduction.
However, the following easily proved remarks show that the same type
of statements about filters cannot be made in minimal T, and minimal
T ,-spaces.

(1) In a minimal T, or minimal T,-space, every point in the space
is a cluster point of every open filter.

(2) In a minimal T, or minimal T,-space, if a filter converges to
a point x in the space, and [7] C [Z], then the filter converges to y also.

One similarity between minimal 7,, minimal T,, and minimum T’-
spaces is that in each case, the nonempty open sets form a filter base.

Any subspace of a minimum T,-space is minimum 7T,. Any closed
subspace of a minimal T,-space is minimal 7T, [2]. Any nonclosed
subspace of a minimal T,-space is not minimal 7,. A subspace of a
minimal T, (minimal T;) space which is both open and closed is minimal
T, (minimal T,) [3], [2]. There exist closed subspaces of minimal T,
(minimal T,) spaces which are not minimal 7, (minimal T},) [3][2]. The
following example and two theorems show that any subspace of a
minimal T,-space is minimal T,, and that while minimal T,-ness is not
hereditary, an open or closed subspace of a minimal T,-space is
minimal T,.

ExaMPLE 5. Let (X, .77) be as in Example 3, let
B =[(—<,00U(@, ).

Then (X, .7") restricted to B is not a minimal T,-space. This can be
seen by observing that in this relativized topology, (— oo, 0] is an open
set.

THEOREM 5. If B is an open or closed subset of a minimal Ty
space (X, .77), then 7 relativized to B is minimal T,

Proof. Let (B, Z) be B with the relativized topology. Suppose
Z*C %, where Zr* is a T, topology on B, and * # %. If B is
open, then * U [G: Ge .7, BC (] is a proper subtopology of .7~ on
X. If B is closed, then [G:Ge # and GC ~BlU[GC ~B: Ge Z'*]
is a proper subtopology of .7~ on X. In both cases, these subtopologies.
are T, and this contradicts the fact that .7~ is minimal 7,. The proof
that these are topologies on X is similar to the proof of Lemma 1.
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THEOREM 6. Any subspace of a minimal T, topological space is
minimal T.

Proof. Any subspace of a T,-space is T, [8]. It is clear that
nestedness of the open sets is hereditary; therefore, by Theorem 2, any
subspace of a minimal T,-space is minimal T,,.

Given a topological space with property P, it would be of interest
to know if the space could be written as the least upper bound of all
minimal P-spaces weaker than it, or the greatest lower bound of all
maximal P-spaces stronger than it. Unfortunately, this seems almost
never to be the case. There exist bicompact spaces which are not
weaker than any maximal bicompact space [7]. There exist T,, T,
T,, T, and T-spaces, which are not stronger than any minimal T,,
minimal T,,, minimal T;, minimal T,,, or minimal T,-spaces, respectively

[5].
ExAMPLE 6. Let X be the real numbers, let

~7l = [(—OO,CI:):WGX] U[Q!Xl s
and let
Te =@ ~)zeX]U[0, X].

If &7 is the usual topology on the reals, then .~ is not only stronger
than a minimal 7, topology on the reals, it is the least upper bound
of the two minimal T, topologies .7, and .,. However, not every
T, or T, topology may be written as the least upper bound of minimal
T, or T, topologies. As an example of this, consider the minimum
T, topology on the reals. If it were stronger than some minimal T,
or T, topology on the reals, it would have to contain an uncountable
family of nested closed sets; but, this is not the case since every
closed set is finite. The following theorem gives a more desirable result
when X is a finite set. As mentioned before, the T, and T, axioms
are equivalent in finite sets.

THEOREM 7. Let X be a finite set, let & be a T, topology on
X. Then 7~ may be written as the least upper bound of minimal
T, topologies on X.

Proof. It is sufficient to show that for every open set B in &,
there exists a minimal T, topology on X which is weaker than .7~
and which contains B. To show this, choose an open set Be .7~ and
let .77* be a maximal chain of open sets in .9, one of which is B.
7 * forms a topology on X, and since X is finite, .7 * is T,. (Note
that if X is not finite, . * may not be T, as is the case when (X, .97)
is the minimum T, topology on the real numbers.) & * is minimal T,
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by Corollary 1.

As a final remark, the product of minimal 7, or minimal T,
topologies on sets of cardinality greater than one is never minimal T,
or minimal T,. Also, minimal T,-spaces are not absolutely 7T|-closed
and minimal T-spaces are not absolutely 7T,-closed, where a space is
absolutely T,-closed if it is closed in every T,-space in which it can
be embedded [5].

This paper is a result of a seminar given by W. J. Thron during
the spring semester of 1968 at the University of Colorado. I am in-
debted to him for his help in the preparation of the paper. The
terminology and notation is that of Thron [9].
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