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CONVERGENCE OF A SEQUENCE OF
TRANSFORMATIONS OF DISTRIBUTION FUNCTIONS

W. L. HARKNESS AND R. SHANTARAM

Let F be the distribution function (d.f.) of a nonnegative

S oo

xndF(x)
0

exist and are finite. Define, recursively, the sequence {Gn} of
absolutely continuous d.f.'s as follows: put

Gi(x) = μγι [*[1 - F(y)]dy for x > 0 and
Jo

Gi(x) = 0 for x < 0; for n > 1, let

Gn(x) = ^ U ('[1 ~ Gn-i(y)]dy for g > 0 and
Jo

Gn(x) = 0 for x < 0, where

It is shown that if F is distributed on a finite interval, then
the sequence {Gn(x/n)} converges to the simple exponential d.f.
On the other hand, if F(x) < 1 for all x > 0 and Gn(cnx) -»G(x),
where G is a proper d.f. and {cΛ} is a sequence of constants
such that {cjcn-i} is bounded, then (among other things) it is
shown that (a) the convergence is uniform, (b) G is continuous
and concave on [0, oo), (c) cn is asymptotically equal to

[1 — G(u)]du and (d) lim cn/cn-i
0

exists. Finally, criteria for the existence of a sequence {cn}
such that {Gn(cnx)} converges to a proper d.f. are given. In
particular, it is shown that this sequence converges if F is
absolutely continuous with probability density function (p.d.f.)
/ and F has increasing hazard rate.

The d.f. (?! is obtained as an (integral) transform of the d.f. F.
These transforms (although not explicitly labeled as such) have been
encountered frequently in renewal theory. In particular, it is such a
transform (d.f.) which, in a delayed renewal process, makes the renewal
rate a constant. In order to verify that (?! (and hence, inductively, Gn

for n > 1) is indeed a d.f. one makes use of the well-known alternative
computational formula for the mean μ^ of a nonnegative r.v. X with
d.f. F:

μί = [°xdF(x) = Π 1 ~ F(x)]dx .
Jo Jo

More generally, it may be shown that (cf. Feller [3], p. 148)

403
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(1.1) μ
n
 = Vx*dF(x) = nί V-'fl - F(x)]dx .

Jo Jo

A d.f. F is said to be a finite d.f. if there exists real numbers a
and b such that F(x) = 0 for x ̂  a and F(x) = 1 for a? ̂  6. The d.f.
G, given by G(#) = 1 - e~hx for x > 0 and zero for a? <; 0, with b > 0,
is called the exponential d.f. The c.f. φ of a d.f. F, defined for all

eitxdF(x), is said to be an analytic c.f. if φ(t)

coincides in some (real) neighborhood of t — 0 with an analytic function
A(z) of a complex variable z — t + iv. In particular, if A(z) is entire
then φ is called an entire c.f.

In § 2 we calculate explicitly the moments and c.f. of Gn, n ^ 1.
We prove in § 3 that for a finite d.f. F the sequence {Gn(x/n}} converges
to the exponential d.f. The following three sections are devoted to
the problem of existence of a sequence {cn} of constants such that the
sequence {Gn(cnx)} converges to a proper d.f. Finally, in the last section
some examples are given.

2. Moments, characteristic functions* Throughout F will be
a d.f. of a nonnegative r.v., all of whose moments μnare finite. Let
φF and φGn denote the c.f.'s of F and Gn, respectively; the kth moment
of Gn will be denoted by μk>%. We first consider the case n = 1.

T H E O R E M 2 . 1 . The c.f. φβi of GL is given by

(2.1) φβι(t) = (itμd-'lψFit) - 1] , for t^O , a n d φφ) = 1 .

Proof. Clearly, φβι(0) = 1. For t Φ 0 ,

ψ (t) = ["e^dGάx) = μA~eitm[l - F(x)]dx
Jo Jo

= μ~ι lim ίV* [l - F(a;)]dsc
α-*oo Jo

= lim (itμd"ιleita[l - F(a)] + \\itxdF{x) - l\
α-oo I JO J

- (itμdΛψλt) - 1]

THEOREM 2.2. The moments μktί of G1 are given by

μkΛ = μk+ι/(k + l)μ, , fc = 1, 2, .

Proof. By definition,

/**.! = (V*?i(») = ̂ Γι[ V ί l - F(x)]dx
Jo Jo

= μk+ί/(k + l)μt
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using (1.1).
Using the recurrence relation

μk,n = j~xkdGn(x) = / C

and mathematical induction, we obtain the following result.

THEOREM 2.3. For all positive integers n and k,

n + k\~ι

1 ^(2.2) μkt% = klnlμn+k/(n + k)\μn = ί

The result given in Theorem 2.3 is of some independent interest,
inasmuch as it asserts that if {μn} is the moment sequence of a non-
negative r.v. then the sequence {μk,n}, given in (2.2), is also a moment
sequence for every n.

Similarly, using the recurrence relation (for t Φ 0)

obtained by replacing Gι by Gn and F by G ^ in Theorem 2.1, and
induction, we can prove the following theorem, which again is mostly
of independent interest.

THEOREM 2.4. The c.f. of Gn is given by

(2.3) Ψoβ) - "I \ψF(t) - Σ μr^Λ t Φ o

with φGn(0) = 1.

Finally, we observe that if {cn} is a sequence of positive real
numbers then {Hn}, Hn = Gn(cnx), is a sequence of d.f.'s, with the jfcth

moment of Hn being given by

(2.4) μk{Hn) - μkjol .

3. Convergence of {Gn} for finite d.f/s* We shall prove in
this section that for finite d.f.'s l inv^ Gn(x/n) is an exponential d.f.
We need some lemmas.

LEMMA 3.1. If all the moments μn of F are finite then {μn+1/μn}
is a monotonically nondecreasing sequence.

Proof. For n a positive integer and t real,
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JO

Hence μ\ - /Vi-i/Λ-i ^ 0 implying that /Λ/Λ-i ^ μn+ilμn, n ^ 1.

C O R O L L A R Y . μ n + k / μ H ^ ( μ Λ + 1 / μ n ) k , n , k ^ l .

The following result is easily proved (see Boas [2]).

LEMMA 3.2. // F is a finite d.f. on [α, b] ivhere 0 <i α < δ <
6 = inf {a; ] F(α) = 1} then \\mn^μ]ln = b.

LEMMA 3.3. Under the hypothesis of Lemma 3.2

lim μn+k/μn = b\ k ^ 0 .

Proof. Since {μn+ilμn} is a nondecreasing sequence lim%_)OO μn+1/μn —
L ^ oo exists. By a well-known theorem this implies that l im % ^ μ)[n =
L and by Lemma 3.2 it follows that L = b < ^ . Hence

lim /ΛW/Λ = (lim μn+jμn)
k = Lk = ¥ .

The lemma is proved.

THEOREM 3.1. Let F be a finite d.f. on [α, δ], where

b = inf {a? | F(α ) = 1} .

Then l i m , ^ Gn(x/n) = G(a ) Ξ 1 - β-"/δ /or a; > 0 α7̂ d ̂ βro for x ^ 0.

Proof. Letting cn — 1/n we get from (2.2) and (2.4) that μk(Hn) =
nkμh,n—*klbk as n—^ oo. The limit is the kιh moment of the exponential
d.f. G(x) given in the statement of the theorem. The present theorem
new follows from the moment convergence theorem (cf. Loeve [7],
p. 185).

4* D.F/s on an infinite range* For finite d.f.'s Theorem 3.1
gives an explicit sequence {cn}, namely, cn — 1/n, of normalizers such
that Gn(cnx) converges to an exponential d.f. We investigate, in the
remainder of this paper the problem of existence of the sequence {cn}
for d.f.'s F on [0, co) (i.e., F(x) < 1 for all x) all of whose moments
μn are finite. Henceforth F will stand for such a d.f.

THEOREM 4.1. l i m ^ μn+1/μn = + oo

Proof. Since {μn+Jμn} is nondecreasing its limit L ^ + oo exists.
Assume to the contrary that L < + oo. This implies l irn,^ μ\ln =
L < co. We now show that this is a contradiction by proving that
lim^co μ][n = +co. Let A > 0 be an arbitrary (fixed) number. Then



CONVERGENCE OF A SEQUENCE OF TRANSFORMATIONS 407

μn = [~χ«dF(x) ^ \~x*dF(x) ^ An[l - F(A)\ .
Jo }A

Hence, lim^eo inf μlln ^ A. Since A was arbitrary we conclude that
βlίn —* +0° as n —> 00. Hence L = + 00.

We shall need the following result which is easily proven by
induction on k.

LEMMA 4.2. If lim μn+2μjμl+i — I < °° then for each k Ξ> 0 and

0 ^ r ^ kf lim^.0 μn+kμjμn+rμn+k-r = lnk~r).

LEMMA 4.3. // 2̂ (0?) /̂ αs an analytic c.f., lim inf „_« μn+2μn/μi+ι = l

Proo/. By Lemma 3.1, lim inf^^ μn+2μjμ2

n+i = α: ^ 1. If α: > 1,
choose /9 such that α > β > 1. Then there exists N such that

for n^ N. Hence μN+2μN/μN+i > /δ; i.e., μN+2 > /SaiVδiV where α^ =
βN+JμN and &iV = μN+ι. Similarly, μN+3 > β3a%bN, and, by induction, it
follows t h a t μN+k+1 > βk{k+l)l2ak

Nbm k ^ 1. Let t ing JV + k + 1 = π this
becomes μn > ig(»-^)(»-^-i)/2αn-,v-i&jvί fOr ^ ^ iV + 2 and so

lim sup μl[n/n ^ lim sup β{n~N~ί)l2aNln = + oo

since /S > 1. This is a contradiction since lim sup^TO μ\ln/n < oo if F(x)
has an analytic c.f. (see [8] p. 136). The lemma is proved.

The main theorem of this section is the following.

THEOREM 4.1. Let {cn} be a sequence of positive real numbers
such that Hn{x) = Gn(cnx)—>G(x), with G(x) a proper d.f. and assume
that lim sup^oo c%\cn_x = I < oo. Then

( i ) {bn} is a bounded sequence where bn = \ [1 — Hn(u)]du.

( ii ) b = \°°[1 - G(u)]du< oo.
Jo

( i i i ) bn —* 6 as n —> oo.
( iv ) lim^TO cjc^ = I.
( v ) If lim^co an = λ where an > 0, λ > 0 £&#ft lim^.,^ Hn(anx) =

( v i ) G(a?) is continuous and concave on [0, oo) αwd lim^*, Hi(x) —
G'(x) for x>0.

(vii) Z ̂  1 and equality holds if F has an analytic c.f.
(viii) lim^oo μk(Hn) = μk(G) for k^O, where μk(G) is the kth

moment of G.
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Proof. Let bn - Γ[ l - Hn(u)]du and b = (~[1 - G(u)]du .
Jo Jo

( i ) Since lim sup^eo cjc^ = I < oo f there exists N' such that
cJCn-i < ί + 1 for n > N'. Also there exists $0 and N" such that
G(a?o) > ί and Hn(x0) > i for w > JV". This last assertion is valid
since Hn(x0) —> G(x0) > h Now

Hn(x) - Gn{cnx) =
(4.1)

by a simple change of variable. For n > max (N'9 N") (4.1) yields

[1 - ffj

0

Hence

[1 - Hn^(u)]du Hn(x0)

r α + 1 > . ° / ;

= I [1 - G(u)]du G(x0) < oo .

(ii) By Fatou's lemma and (4.2)

b = Γ[ l - G(u)]du S liminf Γ[l - Hn(u)]du < co .
Jo n-*oo Jo

(iii) Let sup% bn = D < oo and sup% cjc^ = M < oo. From (4.1),

so that for ^ ^ 2 and α; ̂  0

Γ [1 ~ Hn^(u)]du ^ Γ [1 - fl.^ίw)]^
(4.3)

Now let ε > 0 be arbitrary. Pick x0 such that 1 — G(x0) < s/2D and

S oo

[1 — G(u)]du < ε. Then there exists N such
that for n > N, 1 — Hn(x0) < ε/D and also

s .l - G(u)]du
Jo

Since (4.3) holds for all x,

("[1 - Hn^(u)]du ^ Γ [1 - H^iu^du ^ D[l - Hn(x0)] < ε .

Then for n > N,
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l - G(u)]du

^ I [*\l - Hn^(u)]du - [Xί[l - G(u)]du

- G(u)\du < 3ε .
xL

Hence 5w->6 as %->oo, In other words the sequence of first moments
of Gn(cnx) converges to the first moment of G(x). Recalling (2.2) and (2.4)
we conclude that cn ~ μn+ι/b(n + l)μn. Note that b > 0 since G(x) is
a proper d.f.

(iv) Since {cn/cΛ_1} is bounded the sequence will fail to have a
limit only if ^ > lim s u p , ^ cn/cΛ_1 = p > q = lim inf „_«, cjcn^. It
suffices to assume p > 0 and p > q and obtain a contradiction.

Let 0 < ε < (p ~ q)/2. Then p - ε > q + ε. Let {cnVcn^i} be a
subsequence converging to p and let <v/<V-i > P — ε f ° r ^ ' > N Then,
from (4.1) for x > 0 and n' > N we have

Hn.(χ) δ b~U
Jo

so that G(x) ^ b~Λ [1 — G(u)]du. In a like manner,
Jo

G(x) ^ ό " 1 ^ " )X[1 - G ( ^ ) ] d % .
Jo

Since p — ε > q + ε these inequalities together imply that

nv~^[l _ G(u)]du - 0
J(g+c)aj

or that G^) = 1 a.e. on [(q + ε)x, (p — ε)x]. If G(x) is continuous on
(0, oo) it would follow that G{u) = 1 on [(q + ε)x, (p — ε)x] for x > 0
and so (?(#) is degenerate at the origin which is a contradiction of
our hypothesis. Hence p = q and lim^^^ on\cn_γ — I exists. Hence it
suffices to show that G(x) is continuous on (0, oo). It is clear that
Gn(x) has derivatives for x > 0 up to order n — 1. Therefore, for
n ^ 3. we obtain from (4.1) that

^'(a?) - - c i [ l - (?^ 2(c^)]/c_Λ_ 2δ%-iδw- 2 ̂  0

for x > 0. Hence jffn(a;) is a concave d.f. for n ^ 3 and x > 0. So

- lim Hn(θx + (1 - )̂τ/)

^ lim [ίfl,(a;) + (1 - ^^.d/)] = ΘG(x) + (1
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and G(x) is concave for x > 0 and hence continuous on (0, oo).
( v ) Let ε > 0 be given and let x > 0. Let an > 0 and an —• λ > 0.

Since G is continuous at Xx, there is a δ > 0 such that

] G(λ# + λ) - G(λa?) I < ε for | h \ < δ .

Pick ε' such that 0 < ε' < min (ε, δ/x). Then for n large Hn(anx) —
Hn(Xx) < Hn((X + e')x) - Hn(Xx) — G(λα + e'x) - G(Xx) < ε. Hence for
large enough n, Hn(anx) — Hn(Xx) < 2ε. Similarly, for large enough n>
Hn(anx) - Hn(Xx) > -2ε . Thus

I Hn(anx) - G(Xx) I ̂  | Hn{anx) - Hn(Xx) |

+ I Hn(Xx) - G(Xx) I < 2ε + ε - 3ε

for sufficiently large n. That is, l i m , ^ Hn{anx) = G(Xx).
( v i) By virtue of (4.4) and (iii), (iv), and (v),

H:(x) — lb~ι[l - G{lx)\

for x > 0. On the other hand we see from (4.1) that

(4.5) G(x) = δ - ' Π 1 - G ( y ) \ i n , x > 0
Jo

and so for x > 0

(4.6) G'(x) - Ib-'ll - G(lx)\ = lim H&x) .
n—»oo

Since G(x) is continuous it follows from (4.5) that G'(x) exists for all
x > 0.

It remains to show that G(x) is continuous at the origin. Clearly,
by definition, G(0) = 0. Also, from (4.5), G(x) ^ lb~'x <ε for x > 0
sufficiently small. Together with the argument in (iv), this completes
the proof that G(x) is continuous and concave on [0, oo).

(vii) From the remark at the end of (iii) we know that cn ~
μn+ί/b(n + l)μn. Since cjen^ —• I it follows that μ^+^μJlA+i —* I- Hence
I ^ 1 (Lemma 3.1) and I = 1 if F has an analytic c.f. (Lemma 4.3).

(viii) Since μn+2μjμl+i—*l by (vii) we have from Lemma 4.2 that

(μjμn+dkμn+jμ« = Π μ*+iμJμ +i-ιμ*+i-+Tlli~1 = lHk~l)l2

Further, from (iii) μn+1/(n + l)cnμn —> 6. Hence

μk{Hn) =
n

kl(μn+1/(n + l)cnμn)
k(μjμn+ι)

kμn+kμn9

k\bΨ{k-ί)l2 = vk , say.



CONVERGENCE OF A SEQUENCE OF TRANSFORMATIONS 411

The proof of (viii) would be completed on showing that vk is the kth

moment of the limiting d.f. G(x) and this we show now. From (4.5)
dG(x) = Ib-'ll - G{lx)]dx and hence by (1.1)

μk(G) = ίVdG(a?) = fcίV-^l - G(x)]dx
Jo Jo

- kb\~xk-ιdG{xβ) = kbl^μ^G) .
Jo

It follows by induction that, for k > 0, μk(G) = klbψ{k-1)l2 = vk.

5* Remarks on Theorem 4.1. The above theorem yields among
other things a complete picture about the sequence {cn} (when it exists
satisfying the conditions of the theorem). It shows (a) that asympto-
tically cn ~ μn+ί/b(n + l)μn thus bringing out explicitly the connection
between the normalizers and the growth rates of moments; (b) that the
limiting d.f. G(x) is continuous everywhere, concave and differentiable
on (0, oo) and has finite moments of all orders which are the limits
of the corresponding moments of Gn(cnx); (c) that the convergence
Gn(cnx) —* G(x) is uniform (cf. Parzen [9], p. 438) and (d) that the
limiting d.f. satisfies the integral equation (4.5). The solutions of
this equation will therefore yield the class of limit d.f.'s. This is an
interesting equation and will be discussed elsewhere.

Note that if I > 1 we can conclude from the form of vk that the
limit d.f. is not exponential.

We close this section with the following simple result which is
an easy consequence of Theorem 4.1.

THEOREM 5.1. Under the hypothesis of Theorem 4.1, G(x) is an
expotential d.f. provided that any one of the following equivalent
conditions holds (a) Km sup^eo c% < oo (b) μn+ί/μn — 0(n).

6* An existence criterion for {cn}. It was shown in Theorem
4.1 that if the cn are normalizers and lim supw_oo cjen^ < oo then
lim^eo μn+2μjμl+i exists and is finite. In Theorem 6.1 below we show
that this latter requirement is a sufficient condition for the existence
of {cn} and in Theorem 6.2 we show that this condition is satisfied
for a very wide class of distributions.

THEOREM 6.1. Let F be a d.f. of a nonnegative r.V. having finite
moments μly μ2J , such that δn = μn+2μjμl+ι —* 1 as n —• oo. // < n =
μn+1/(n + l)μn, then Gn(cnX)-+G(X), where G(X) - 1 - e~x for X^O
and G(X) - 0 / o r l ^ 0 .

Proof. From the assumption δn —> 1 as n —• oo it is clear that
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0Λ/cw-i -*1 Furthermore, from the proof of Theorem 4.1 (iii), it follows
that μk{Hn) —>kl as n—* oo for k — 1, 2, . The sequence {kl} is a
moment sequence uniquely determining the asserted d.f. G and there-
fore the assertion of the theorem is a consequence of the moment
convergence theorem.

In order to exhibit distributions for which μnμn+2/μl+1 converges
(to one) we need the following definitions and facts.

A function g(x, y) of two real variables ranging over linearly
ordered one-dimensional sets X and Y, respectively, is said to be totally
positive of order r (denoted by TPr) if for all x1 < x2 < < xmf

Vι < Vz < < ym, with Xi e X, Vj e Ϋ, and m = 1, 2, , r, the deter-
minant of the mxm matrix with (ΐ, j)th element g(xi9 yά) is nonnegative.
If g(x, y) is TPr for all r, this fact is indicated by saying g(x, y) is
TP. Also, a nonnegative function k(x), defined for all real x, is said
to be a Polya frequency function of order r (PFr) if g(x, y) = k(x — y)
is TPr. In statistical applications, y is usually a parameter and g(x, y)
is a probability density function (p.d.f.) in x for each fixed y.

Following [1] we shall say that a d.f. F has increasing hazard
rate (IHR) if ln[l — F(x)\ is concave (in which case the support / of
F is an interval). The following results are well-known (see [1], [4],
[51, and [6]). (6.1)

( i ) F has IHR if and onlf if 1 - F is PF2.
(ii) If F is absolutely continuous with p.d.f. /, then F has IHR

if and only if the hazard function q(x) — f(x)/[l — F{x)\ is nondecreasing
in xel.

(iii) The class £ίf of all d.f.'s which have IHR is closed under
convolution: F,Ge£έf =>H = F*G e <%?:

(iv) Each member of the exponential family, a class of d.f.'s
having p.d.f. 's of the form h(x, y) = β(y)exy with respect to a σ-finite
measure μ on (—c>o, oo), is TP. Here, X= (—oo, oo) and

X = {y- β(y) = \e*"dμ(x) < oo J

is an interval. The family includes the binomial, Poisson, gamma,
and normal d.f.'s, for example.

(v) If F has IHR, then 1 — F(x) tends to zero as x —> oo expo-
nentially fast. Thus, if F has IHR or 1 — F is PF2, all moments of
F exist and are finite; in fact, F has an analytic c.f.

(vi) F and/or 1 - F may be PF2 while the p.d.f. / (if it exists)
is not PF2. This is so even if F has IHR. However, if F is an
absolutely continuous d.f. such that the p.d.f. / is also PF2f then F
has IHR.

(vii) If G(y) = 1 — e~y for y ^ 0 and zero elsewhere, and F is a
d.f. of a nonnegative r.v., then F has IHR if and only if there exists
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a nonnegative convex increasing function h such that F(x) — G[h(x)].
In [1], p. 384, it is shown that if F (1) is absolutely continuous,

(2) is the d.f. of a nonnegative r.v., and (3) has IHR, then for all
real numbers t > s > 0,

(6.2) (\+t/\r ^ (w^r

where Xr = μr/Γ(r + 1) with μr = 1 xrdF(x). The inequality (6.2) was
Jo

proven in [6] (cf., equation (16), p. 1032) for the special case i = 0,
assuming that F has a continuous p.d.f. f(x) which is PF2. From
(6.2), it follows immediately, on putting ί = n — 1, t = 2, and s = 1,
that

(6.3) [μ«+i/(n + l)(n + 2)μn] £ [μn+i/(n

i.e.,

(6.4) μn+2μjμl+1 £ 1 + (n + I)"1 .

Since μn+2μn/μZ+1 S 1 always, we obtain the following theorem.

THEOREM 6.2. Let F be the d.f. of a nonnegative r.v. and assume
that F has IHR and is absolutely continuous. Then

δn = μnμn+Jμl+i — 1, ^^ ^ -> oo .

We remark that if F is a finite d.f. on [α, 6], 0 <£ α < 6 < oo, then
by Lemma 3.3, <?w —> 1 as n —• oo no other assumptions are needed.
Furthermore, all d.f.'s satisfying the hypotheses of Theorem 6.2 have
analytic c.f.'s; an example in the following section shows that this
is not necessary, so that Theorem 6.2 provides only sufficient conditions
for dn to converge to unity.

7 Examples. This section contains several examples illustrating
the results obtained in this paper. The first example illustrates Theo-
rem 3.1; the second shows that analyticity is not necessary for the
existence of normalizing constants cn such that Gn(cnx) —* G(x) with
δn —> 1; and the last few examples illustrate the concepts of § 6 and
Theorem 6.2.

EXAMPLE 1. Let F(x) = 1 — p for 0 < x ^ 1, 1 for x > 1 and zero
elsewhere be the d.f. of the Bernoulli distribution P(X = 0) = 1 — p,
P(X = l)=:p,0<p<l, with mean μx = p. Then Gn(x) = 1 - (1 - x)n

for 0 ^ x <; 1,1 for x > 1 and zero elsewhere. Gn(x) converges to the
d.f. degenerate at the origin, but lim .̂,̂  Gn(x/n) — G(x) = 1 — e~x for
x > 0 and zero elsewhere.
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EXAMPLE 2. μn = {An + 3)!/6 is the nth moment of a d.f. F which
is not uniquely determined by {μn} and hence does not have an analytic
c.f. (cf., Widder [11], p. 126). But since

μn+2μjμl+i -> 1, cΛ = μn+i/(n + l)μn ~ 256n*

are normalizing constants, i.e., Gn(cnx) —+G(x). Since I — 1 the limit
d.f. (r is exponential. (This can be varified by the moment conver-
gence theorem also).

EXAMPLE 3. Let Fβ(x) = 1 — e~x\ f or x > 0, β > 0, and zero other-
wise, be the d.f. of the Weibull distribution. The corresponding p.d.f.
is given by fβ(x) = βxβ~ι[l — Fβ(x)], so that the hazard function q(x) =
βxβ~ι is nondecreasing for β ^ 1, so that (using 6.1 (ii)) F has IHR
for these values of β. By Theorem 6.2, dn—>1 as w—•oo, for β*zl.
By direct calculations it is easily seen that μn = /"(w + /3//S) and that
δn~+l for αίi /3 > 0; clearly, the assumptions of Theorem 6.2 are not
necessary.

EXAMPLE 4. Let Ga,β = Fα^F^ be the convolution of two Weibull
d.f.'s with parameters a and β. Then for a>l,β>l, we conclude,
using 6.1 (iii), that Ga>β has IHR, so that Theorem 6.2 applies. Veri-
fication of the fact that δn—>1 by computing the moments of Ga,β

directly would appear to pose some difficulty.

E X A M P L E 5. For x > 0, let F^x) = 1 - e~x = 1 - <r*«*\ F2(x) =

1 _ e-e« = i - e-hίw9 . . #> Ffc+1(α?) = 1 - «-**<*>, where Λ0(a?) = α?, ̂ (a?) =

ex, •• ,λΛ+1(aj) = β^^(a;). I t is readily seen t h a t Λx, •• ,ΛJfc are convex

increasing functions, so t h a t by 6.1 (vii) Fu , . F ^ have IHR ? s, and

Theorem 6.2 again is applicable.

E X A M P L E 6. The p.d.f. f(x, y) = e<*-v>-<χ-y), for

x> y >0, 0 <y < oo ,

belongs to the exponential family of distributions. Since f(x, y) —
k(x — y), it is seen that / is TP, i.e., / is PF; Theorem 6.2 applies.

EXAMPLE 7. It is shown in [4] that

f(x) = A Σ (-1)^-^, x > 0 0 for x ^ 0 .

is TP, where A is a normalizing constant. For suitable choice of A,
f is PFr, for all r, i.e., / is PF. More generally, each member of
the family of p.d.f.'s given by f(x — y), 0 < y < ©o, x > ^, is Pi 7.
Therefore, the conclusion of Theorem 6.2 holds.
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