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CONTRACTIONS OF FUNCTIONS AND
THEIR FOURIER SERIES

To Professor U. N. Singh on his 49t birthday
B. S. Yapav

The object of the present paper is to define 2 new type
of contraction, called ‘Shrivel’, of a function and to prove a
theorem on the absolute convergence of its Fourier series.
Our theorem is similar to a theorem of M. Kinukawa, but
as it is shown in the end the two results are essentially dif-
ferent. The original results in this direction are due to A.
Beurling and R. P. Boas.

According to Beurling [1] a function ¢ is said to be a contraction
of function f if |g(®) — g(y)| < A |f(x) — f(y)|, for all x, y, where A
is an absolute constant. We shall assume throughout that the func-
tions f and ¢ are each L — integrable in (—=x, 7) and periodic with
the period 27. We shall further let

1

f@) ~—

a, + ;21 (a, cos kx + b, sin kx)
and

g(x) ~ —;—co + 2 (¢ cos kx + d, sin kx) .
Kinukawa [3] has proved the following

THEOREM 1. Let f and g be each continuous and g be a contrac-
tion of f, or more generally let f, g€ L, and

| 1o+ — g Fde = g_ \f@ + ) — f(@) | dw, for all h.

If
=) n a2
(1) S ) < oo
and
o o al2
(2) S 5 p)" <o
n=1 k=n+1

where pi = |a,|* + [b.|* and 0 < ¢ £ 2, then

(3) S (el + 1Al < oo
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The case @« =1 in this theorem is the theorem of Boas [2], which
in turn is a generalization of a theorem of Beurling [1] on the abso-
lute convergence of Fourier series.

However, it has been shown by Leindler [4] and Sunouchi [5]'
that the conditions (1) and (2) are equivalent. In fact, a more general
result has been proved by R. Askey in his not yet published work
which we shall need later and hence state here in the form of the
following

LEMMA!. Let s>0,0<p<1,a,>0. There are constants K =
K(p, r, s) > 0 such that

Sufr el 2k Sw(Sa), r> -1
n=1 k=1
and

i W(i ak>p =2 K i n"[n‘s zn] lcsak]p, r<ps—1.
k=mn k=1 k=1

n=1

The object of this paper is to prove Theorem 2 which is similar
to Theorem 1; but as we shall see in the end the two theorems are
independent of each other. Before we can state our result precisely,
we need introduce a couple of notations and a definition.

We put

4f@) = 3, (~D*ChS e + (m — 20)1]
and
L™, , f) = S"A:”f(x)dt .
h Jo

DEFINITION. We shall call a function g a ‘shrivel’ of order m
of a function f if

|L™(h, @, 9) | = A|L"™(h, 2, /)|,
for all « and for all 2 > 0.

We shall prove the following

THEOREM 2. If g is a shrivel of order m of f, or more generally, if

! The author thanks the referee for pointing out to him these references and
the unpublished work of R. Askey to show the equivalence of the conditions (1) and
(2) which he missed in his original text of the paper.



CONTRACTIONS OF FUNCTIONS AND THEIR FOURIER SERIES 829

(4) [ 12w w o de = |7 117G, o, ) o,

T

and tf (2) holds, then the conclusion (3) remains valid.
Before we proceed for the proof, we mark that for 0 < |k | < 7,

(m) A(m) (* .
L7, ) = A g d

and hence L‘™(h, z, f) is a bounded function of x for fixed ~ and f.
[A(m) denotes here, as also in the sequel, a constant depending on m
but not necessarily the same everywhere.] Therefore L™ (h, x, f) € L,.
The same is true about L‘™(h, x, g) also. Thus the condition ‘g is a
shrivel of order m of f’ does imply (4). Obviously, the converse is
not true.

Again, it follows from the lemma that the condition (2) is equiva-
lent to the condition

(5) S (S knp) " <es
n=1 k=1
and this is what we shall need in the proof of our theorem .

Proof. We can obtain by simple calculations that, for an even m,

oo

Arg(x) ~ (—1)™22™ 3 (¢, cos kx + d, sin kx) sin™kt ;

k=1

and hence

L™k, 2, g) ~ (—1)m2m ,%i (¢, cos kz + d, sin kx)(% S:sin’” ket dt> :

Similarly for an odd m,

L™(h, z, g) ~ (—1)m-nre2m i‘, (d,, cos kx — ¢, sin kw)(% Shsin’” kt dt) .

k=1

Therefore by Parseval’s theorem

T

S g (L ghsin"‘ kt olt)2 = A@m)\ |L™(h,z, g) ] dw
k=1 h 0 r

|
(6) < A(m)S; | L™ (h, @, £) | do
—Am) S pi(-% S_ sin™kt dt)z ,

where
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¢ =c+d.

Now taking h = 7/2"*' and observing that

(i) sinkt > 0, and is an increasing function of ¢ for 7/2"+* <
t < 7r/2n+1; 2t < & < 2n

(ii) sin®kmr/2"+ > gin* /8 for 2"' < k < 2*, we get

oo gntl zj2n+1 2
Z(I( - S sin™ ktdt>
k=1
o+l xjentl
= S sin™ ktdt)
k= 2"—1+1

(%
(7) <2n+1 Sﬁzn“ sin™ ktdt>
(%

k gn—l_H zjent2

rtt o mw .S kr
2n+2 2n+1)

"= 2n—1+1

2m

=z A(m) > qi.

k=2n—141

Also, by Holder’s inequality

(8) gt s 20 S g)"
k=2n—14] k=2n—1l41

Therefore we obtain from (6), (7) and (8)

o oo 2"

Sai=2 > q

n=2 n=1p=gn—141

oo oo n zjentl a2
= A(m, a) Z 2nit—al [Z pi(z HS " sinm ktdt) ] /
Py k=1 T Jo

krm )“/2

< A(m, a)[z‘, nit—al (Z P} sin®™ o

n=

oo ©o al2
cge(§,)]

k=271

§ A(m, a)[i Zn(l—alz—ma)(:zj' kzmp§>a/2

n=

o oo al2
n(l—al2) 2
rEzer( 5 m) ]

k=2741

Now it is not difficult to see that the two series within the square
brackets are covergent if and only if (5) and (2) hold respectively.
See Szasz [6], Lemma 2.2. Since

|0k|a§q}§, Idklaéqzy

(3) follows; and hence the proof.
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To prove that the result of Theorem 2 is completely independent
of Kinukawa’s Theorem 1, we first see that g is a shrivel of order 1
of f if for all z and all 2 > 0,

h i I Ch
(9) || o + 0 — 9@ - )at| =a || (7@ + 6 — s — ot .
Now consider the 27 — periodic function defined by

fl@y=0 for —7T<x<O0,
=sin22 for0<a=<rm.

Also let

o) =2« for <O
=x—a* for =0,

and let g(z) = ¢(f(x)) for all . The function ¢ is differentiable and
has a bounded derivative on the interval [—1, 1]. Hence ¢ belongs tc
the class Lip 1 on this interval, whence, g is a contraction of f in
Beurling’s sense. On the other hand,

Sﬁﬂw—ﬂ—mazgkmmmzo,
while

[ o) — a(=tyat = | gtra

/2
= S (sin 2t — sin® 2¢)2¢ + S sin 2tdt
0 2

x/

zf2
=—gmMM¢m
0

so that (9) is not satisfied for any A when © =0 and ~ = 7.
Conversely, since (9) can be satisfied when f, g are merely integra-
ble, (9) does not imply that g is a contraction of f.
Finally we remark that Theorem 2 has its usual dual.
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