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NONCOMMUTATIVE CONVOLUTION
MEASURE ALGEBRAS

JOSEPH L. TAYLOR

A convolution measure algebra is a partially ordered Banach
algebra in which the norm, order, and algebraic operations
are related in special ways. Examples include the group
algebra L\G) and measure algebra M(G) on a locally compact
group G and, more generally, the measure algebra M(S) on
any locally compact semigroup S.

This paper demonstrates several ways in which a convo-
lution measure algebra can be realized as an algebra of
measures on a compact semigroup. A relationship is established
between such realizations and certain classes of Banach space
representations of the algebra. These results give a partial
extension to the noncommutative case of the structure theory
of commutative semi-simple convolution measure algebras.

The notion of convolution measure algebra was introduced in [22].
The main theorem of [22] states that a semisimple commutative
convolution measure algebra 9K may be represented as an algebra of
measures on a compact Abelian topological semigroup S, where S has
the property that the multiplicative linear functionals on 3K are given
by the semicharacters of S. In this paper we seek analogous results
in the noncommutative case.

The central idea of the paper is this: we attempt to represent a
given convolution measure algebra Έl as an algebra of measures on a
compact semigroup S in such a way that certain key structural
properties of 3K are reflected in the structure of S. The map from
3K into the measure algebra M{S) will be called a realization of 2K
on S. It turns out that for a given convolution measure algebra
there are several different semigroup realizations, each of which has
intrinsic importance. We motivate the study of semigroup realizations
as follows: compact topological semigroups have a very rich structure
which has been the object of a great deal of study recently (cf. [1],
[12], and [23]); it is hoped that structure theorems for compact
semigroups will suggest structure theorems for convolution measure
algebras and aid in their proofs. In particular, if 23Ϊ has a realization
on a semigroup S, then the kernel, idempotents, maximal groups, and
ideals of S should be related to corresponding structural elements of
Wl. For a given 3K and S the success of the above program depends
on having transportation between 3K and S; i.e., one must develop
ways of interpreting structure in S in terms of structure in Tt and
vice versa. This is where the greatest difficulties in the theory lie.
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For the commutative case the above program shows some promise
(cf. [18], [19], [20], [21], and [22]). In this paper we make only a
modest beginning on the program for the noncommutative case. We
restrict our attention primarily to the problem of constructing semi-
group realizations.

In § 1 we collect together the information on L-space theory which
will be required in the later sections. In § 2 we define the notion of
convolution measure algebra and develop a method for constructing
realizations. The relationships between Banach space or Hubert space
representations, and realizations for a convolution measure algebra are
discussed in § 3. Here we also show the existence of maximal jointly
continuous and separately continuous realizations.

1* Preliminaries* The Banach space structure of a convolution
measure algebra is that of a complex L-space. In this section we
recall some of the salient points of the theory of complex L-spaces.

Real L-spaces were defined by Kakutani in [10] as lattice ordered
real Banach spaces in which the norm and order relations satisfy
certain conditions. In [15] Rieffel extended the notion to the complex
case. For our purpose here, we do not need the abstract definition
of L-space. It suffices to know that complex L-spaces are ordered
complex Banach spaces that are characterized by the properties listed
below.

1.1. Let X be a locally compact Hausdorff space and M(X) be
the ordered Banach space of finite complex regular Borel measures on
X. An L-subspace of M(X) is a closed subspace 9K such that μ e %Jl
and v absolutely continuous w.r.t. μ implies v e Tt. Every L-subspace
of M(X) is a complex L-space (cf. [22]).

1.2. If SK is any complex L-space, then there is a compact
extremely disconnected Hausdorff space X and an order preserving
isometry μ —• μx of Wl onto a weak-* dense L-subspace of M(X) such

that every i^eSK* has the form F(μ) = \fdμx for some feC(X).
The correspondence F <-> f is an isometry between SQΐ* and C(X) (cf.
[2] and [22]). We shall call X the standard domain of SK.

For a given L-space SPΪ, there are many ways of representing 2K
in an order-preserving isometric fashion as an L-subspace of a measure
space M(Y). The above gives a canonical such representation. Certain
measure theoretic notions are independent of which of these concrete
representations are used; these include real and imaginary part, total
variation, absolute continuity, and L-subspace. These notions are
invariant because they can all be defined purely in terms of the order,
linear space structure, and norm on 3ft.
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1.3. According to 1.2, the dual 3ft* of an L-space ffll has in a
natural way the structure of a commutative C* -algebra with identity
(since it may be identified with C(X)). This C*-algebra structure is
characterized by the condition that (f f)(μ) S 0 for 0 ^ μ e Έl and
/eSK*, where /—>/is the involution (complex conjugation in C(X)).

Henceforth, we shall always consider the dual of an L-space to be
an object in the category of commutative C* -algebras with identity.
A morphism in this category will be a *-homomorphism which preserves
the identity.

1.4. If 2K and 5R are L-spaces and φ: 2K —>9ΐ is a bounded linear
map, then φ is a morphism of L-spaces (or L-homomorphism) if:

(1) φμ ^ 0 whenever μ ^ 0;
(2) \\ψμ\\ = \\μ\\ if μ^Q, and
( 3 ) 0 <£ μ e SK and 0 <£ ω <£ φμ implies there exists v e ϊfl such

that φv = ω (cf. [22], Definition 1.3).
For a bounded linear map φ: 3K —> 9ΐ the following are equivalent:

(a) 9? is an L-homomorphism; (b) <p*:9ΐ*—»3K* is a *-homomorphism
preserving identities; (c) φ**: 3K** -+?£** is an L-homomorphism, (cf.
[22], Th. 1.2). Hence, with this definition of L-space morphism
SK —• 3K* is a contra variant functor from the category of L-spaces to
the category of commutative C*-algebras with identity.

It turns out that if an L-homomorphism φ: 3K —• 9ΐ is injective,
then it is an order preserving isometry of SW onto an L-subspace of
Si (cf. [22]).

Since the dual (p*:%l* —>3K* of an L-homomorphism φ\W,—>9ΐ is
a *-homomorphism preserving the identity, it follows that φ* induces
a continuous mapα: X—> Y, where X and F a r e the standard domains
of 33c and 5Ji respectively. The maps φ, φ*, and a are related by

ί φ*fdμ = φ*f(μ) = f(φμ) = \ fdφμ
J x J r

and φ*f(x) = f(a(x)) for /e9ϊ* = C(Γ), ^ e SW c M(X), and . τ e X
Here, we have taken the liberty-as we shall often do-of identifying
certain spaces with their images under canonical isomorphisms. This
greatly simplifies notation with no great loss of clarity (we hope).

1.5. If 2K is an L-space, then the C*-algebra structure of 2K*
can be most readily identified in applications in the following way:
if 0 <g μ 6 2K, then there is a natural order preserving isometry φμ =
(f->fdμ) of L\μ) into m. The dual φ*μ of this map is a map of SK*
onto Lι{μ)* = L°°(μ). That φj be a C*-algebra homomorphism for each
a is a condition characterizing the C*-algebra structure of 3W*.
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1.6. If 3ft and 9? are L-spaces, then there is a pair consisting of an
L-space 3ft 0 9Ϊ and a bilinear map (μ, v) —* μ 0 v: 3ft x 31 —•> 3ft ® 5R
such that the following condition holds: (*) if X and Y are locally
compact Hausdorίf spaces and μ —> μz, v—*vγ order preserving iso-
metries of 3ft and 5R onto L-subspaces of ikί(X) and M(Y) respectively,
then μ®v—>μx x vγ determines an order preserving isometry of
3ft 0 yi onto the closed linear span in M(X x Y) of the measures
μx x vγ(μ e 3ft, v e 91). The space 3ft 0 5β can be defined as the closed
linear span in M(X x Y) of the measures μ x v(μ e 3ft, v e -Jϊ), where
X and Y are the standard domains of 3ft and 9ΐ respectively (cf. [22]).
It is then quite easy to show that (*) holds even if X and Y are not
the standard domains.

2. Convolution measure algebras and semigroup realizations*
We defined the class of convolution measure algebras in [22]. For
convenience, we restate the definition in an equivalent form below:

DEFINITION 2.1. A convolution measure algebra is a complex L-
space 3ft together with an L-homomorphism φ: 3ft 0 3ft —• 3ft which is
associative (φ(μ 0 φ(v 0 ω)) = φ(φ(μ 0 v)

Under the operation (μ, v)—+μ v = φ(μ 0 y), a convolution measure
algebra is a Banach algebra. We shall use the abbreviation CM.A.
for the term convolution measure algebra. If 3ft is a CM.A. then
an L-subalgebra of 3ft is a subalgebra which is also an L-subspace
(§1.1). An L-subalgebra of a CM.A. is again a CM.A.

The interesting examples of CM.A.'s arise as L-subalgebras of
the measure algebra M(S) on a topological group or semigroup. By
a topological semigroup S we shall mean a semigroup with a Hausdorff
topology such that for each te S the maps s —> st and s —•> ts are
continuous from S to S (separate continuity). If (s, t) —* st: S x S —» S
is also continuous, then S will be called a jointly continuous topological
semigroup.

In [22] we proved that if S is a locally compact jointly continuous
topological semigroup, then M(S) is a CM.A. under convolution multi-
plication. The same thing is true even if the multiplication in S is
not jointly continuous. However, the proof is more subtle due to the
possible nonmeasurability of a separately continuous function on a
product space. The next two lemmas are designed to circumvent this
difficulty.

Let X and Y be locally compact Hausdorff spaces. We denote by
Cω(X x Y) the space of bounded separately continuous functions / on
X x Y (i.e., &—•/(#, y0) and y —*f(xQ1 y) are continuous for each fixed
xoeX, yoe Y). Using Grothendieck's weak compactness theorem (cf.
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[7], Th. 5), Glicksberg in [6] proves that if feCω(Xx Y),μeM(X),
veM(Y), then

, V)dμ(x) and j/(α, y)dv(y)

are continuous functions of y and x respectively and

\\f(χ> V)dμ(x)dv(y) = j J/(α, y)dv(y)dμ(x) .

Note that this may not imply the existence of the double integral

\fdμ x v. We require a sharpened form of this theorem.

LEMMA 2.1. Let X and Y be locally compact Hausdorff spaces,
fe Cω(X x Γ), 0 ^ μ e M(X), and 0 ^veM(Y). Then there exists
a unique element g e L°°(μ x v) such that

0 = j j|/(«, y)-9(x, V) I dμ{x)dv{y)

= \\\f(χ> V) - 9(x> y) I dv(y)dμ{x)

i.e., f and g agree almost everywhere on x or y cross-sections.

Proof. Without loss of generality we may assume X and Y are
compact. If feCω(XxY) then function \f(x,y)-f(x',y)\ is
bounded, continuous in (x, xf) e X x X for each y e Y, and continuous
in ?/ G F for each (x, x') e X x X. It follows from Glicksberg's result
that the function

h(x,x') - j I/(a?,i/) -/(« ' , 2/)

is continuous on X x X. Since Λ,(#, a;) = 0 for every x and the diagonal
in X x X is compact, there exist for each k points x19 , xn eXand
an open cover {Ulf , Un} of X such that ^ e Ui and fc(x, a;') < k~ι

for (x, a;') e Ui x ZT̂.
Let 9?i, , 9?» be a partition of unity in C(X) subordinate to the

open cover {U19 , Un}. We set gk(x, y) = X φi(x)f(xif y). Note that
flrt e C(X x Γ) and

) I dμ(x)dv(y)

= \\\f(x> y) - 9k(x, y) I dv(y)dμ{x)

^ Σ \ψi{x)\\f(%, y) - f(XiV) I dv(y)dμ(x)
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It follows that {gk} coverges in Lι(μ x v)-norm to an element g e L°°(μ x v)
which has the properties we require. The uniqueness is trivial.

Note that the lemma does not directly imply that / i s μ x im-
measurable. Whether or not this must be the case seems to be an
open question. However, the lemma makes this question almost irrele-
vant for most purposes.

The correspondence /—>g of Lemma 2.1 is clearly a C*-algebra
homomorphism of Cω(X x Y) into L°°(μ x v) which extends the natural
homomorphism of C(X x Y) into L°°(μ x v). If 3ft and Sft are L-
subspaces of M(X) and M(Y) respectively, then Έlζ&^l can be
identified with the linear span in M(X x Y) of the product measures
μ x v(μeWl, veyi) (cf. §1.6). It follows from this and §1.5 that
there is a natural C*-algebra homomorphism η: Cω(X x Y) -> (3ft <g) 9ΐ)*
which satisfies

Vfiμ ® ») = \\f(χ> V)dμ(x)dv{y) .

For Ύj to be injective it is obviously necessary and sufficient that 3ft
and %l be weak-* dense in M(X) and M(Y) respectively. Hence, we
have proved:

LEMMA 2.2. // X and Y are locally compact Hausdorff spaces
and 3ft and SSI are weak-* dense L-subspaces of M(X) and M(Y)
respectively, then there is a "-isomorphism rj of Cω(X x Y) onto a
subalgebra of (3ft(g)9ΐ)* such that

Vf(μ <8> ») = j j/fo V)dμ(x)dv(y) = j γ(x, y)dv{y)dμ{x) .

THEOREM 2.1. If S is a locally compact topological semigroup,
then the equation

(2.1) ^hd(μ v) - ^h(st)dμ(s)dv(t) (feC0(S))

defines a multiplication on M(S) under which it is a convolution
measure algebra.

Proof. Glicksberg proved in [6] that equation (2.1) defines a multi-
plication on M(S) which makes it a Banach algebra. To show that
M(S) is a convolution measure algebra, we will show that this multi-
plication is defined by an L-homomorphism <p:M(S)(g)M(S)—+M(S).

Let Cb(S) denote the algebra of bounded continuous functions on S.
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We define a *-algebra homomorphism θ: Cb(S)-> (M(S) (g) M(S))* as
the map h->f: Cb(S)->Cω(S x S) (where f(s, t) = h(s-t)) followed by
the map η\ Cω(S x S) -> (Λf(S) <g) Λf(S))* of Lemma 2.2. Notice that
equation (2.1.) simply says that

hd(μ-v) = θh{μ®v) .

If φ is the dual #*: (ikf (S) (8) M(S))** -> Cδ(S)* of 0 restricted to Λf(S)
(g)Λf(S), then 93 is an L-homomorphism (cf. §1.4), since # is a *-homo-
morphism preserving identities. Since μ v = φ{μ®v), M(S) satisfies
Definition 2.1 and is a convolution measure algebra.

The morphisms in the category of convolution measure algebras
are defined in part (a) of the following definition.

DEFINITION 2.2. ( a ) A map0:2ft—-SK between C.M.A.'s 3ft and
31 will be called a C.M.A.-homomorphism if it is both an algebraic
homomorphism and an L-homomorphism between 3W and 9ΐ as L-spaces.

( b) A realization of 3ft on a locally compact topological semigroup
S is a C.M.A.-homomorphism θ ffll—> M(S) with weak-* dense range.
If θ is injective it will be called a strict realization. If S is compact,
θ will be called a compact realization.

The purpose of the paper is to demonstrate the existence of
certain compact realizations of a convolution measure algebra Tt. In
practice, a CM.A. SK will usually be given as an L-subalgebra of the
measure algebra on a group or semigroup. In this situation we already
have one semigroup realization of Wl in hand. However, the given
semigroup may not reflect strongly the structure of SK. Hence, it is
worthwhile to seek another realization in which the underlying semi-
group has a richer structure. In the commutative case, this is illus-
trated by the algebra M(G), where G is a nondiscrete I.e.a. group. It
is not true that every complex homomorphism of M(G) is determined
by a character of G; however, there is a realization of M(G) on a
compact jointly continuous semigroup S such that every complex
homomorphism of M(G) is determined by a semi-character of S (cf.
[22]). We seek similar "structurally rich" realizations in the noncom-
mutative case.

Throughout the remainder of this section 3JΪ will denote a CM.A.
with multiplication map φ: 2ft 0 SK —> 2JΪ and standard domain X (cf.
§ 1.2). We shall consider 3ft to be an L-subspace of M(X) and 3ft <g) 2ft
to be the closed linear span in M{X®X) of the product measures
μ x v(μ, v e 3ft).

According to Lemma 2.2, we may consider the algebra C ω (X® X)
of separately continuous bounded functions to be a subalgebra of
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(2ft (g) 2ft)*. Thus, we shall simultaneously consider an element of
Cω(X x X) (or C(X x X) <= Cω(X x X)) as a function on X x X and
as a linear functional on 2ft 0 2)1.

If / e C(X) = 331* then φ*fe (2ft (g) 2ft)* may or may not lie in the
subalgebra Cω(X x X). If it does lie in Cω(X x X) then it makes
sense to talk about its cross sections (φ*f)x and (φ*f)x, where
(<P*f)χ(y) = φ*f(χ> V) and (φ*f)x(y) = <p*/0/, χ)> F o r e a c t l ^ e X these
cross sections will be elements of C(X).

THEOREM 2.2. Let A be a closed *-subalgebra of 2ft* = C(X)
containing the identity. There is a compact realization θ: 2ft —> M(S)
of 2ft such that #*:Λf(£)* —»2ft* maps C(S) isomorphically onto A if
and only if A satisfies the following conditions:

(1) φ* maps A into Cω(X x X);
( 2 ) if feA then (<p*f)x e A and (φ*f)x e A for every x e X.
The semigroup S has a jointly continuous multiplication if and

only if φ*AaC(X x X). The realization θ is strict if and only if
A is weak-* dense in 2ft*.

Proof. With minor differences the proof is the same as the proof
of Theorem 2.2 of [22]. Hence, we settle for a brief outline here.

If S is the maximal ideal space of the commutative C*-algebra
A, then S is a compact Hausdorff space and A ^ C(S). Conditions
(1) and (2) on A insure that φ*\ A—+Cω(X x X) may be considered a
map from C(S) into Cω(S x S). It follows that <p* induces a separately
continuous semigroup operation on S. The realization θ: 2ft —+M(S) is
defined in the obvious way noting that M(S) = A* and Ad 2ft*.

DEFINITION 2.3. For a given realization θ: 2ft —>M(S), the algebra
A = #*C(S)(=2ft* of Theorem 2.2 will be denoted Aθ.

Obviously, the algebra Ao completely determines the realization θ.
The following theorem has a trivial proof which we omit; however,
it is probably worth stating explicitly:

THEOREM 2.3. Let Θ^Ti^MiS,) and θ2: 2ft -> M(S2) be compact
realizations of 2ft. The relation Aθχ c Aθ2 holds if and only if there
is a continuous surjective homomorphism a: S2 —* S1 such that the
diagram

M(S2)
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is commutative, where θ3μ(E) = μ(a~ι(E)).

An example of an interesting semigroup realization is the reali-
zation constructed in [22] for a commutative CM.A. 2ft. Here the
algebra Ao is the closed linear span in 2ft* of the complex homomorphisms
of 2ft.

3* Representations. In this section we will demonstrate the
existence of semigroup realizations in which the structure of the
underlying semigroup S is sufficiently rich to allow a certain class of
Banach space representations of 2ft to be viewed as arising from
representations of S.

We are motivated by the work of Eberlein in [3], De Leeuw and
Glicksberg in [4], and Loomis in [11], on almost periodic functions.

Throughout this section 2ft will denote a convolution measure
algebra with standard domain X. If 21 is a Banach space, then i?(2l)
will denote the algebra of bounded linear operators on 21. A left
representation of 2ft on 21 is a bounded homomorphism μ —• Tμ of 2ft
into 5(21). A right representation of 3ft on 21 is a bounded anti-
homomorphism μ —+ Tμ of 9ft into J3(2ί). Most of our results will be
stated for left representations only, though analogous results hold
for right representations. We shall use the term "representation" to
mean "left representation" unless otherwise specified. For a compre-
hensive study of representation theory for Banach algebras see [14].

There are natural left and right representations μ —> Lμ and μ —> Rμ

of 2ft on 2ft* defined by Lμf(v) = f(vμ) and Rμf(v) = f(μv) for fe 2ft*
and μ, v e 9ft. If μ —> Tμ is any representation of 2ft on a Banach
space 2ί, then a subspace 2tx of 21 is said to be invariant under μ —• Tμ

if Tμ% c a x for every μ e 2ft. A subspace A of 2ft* is said to be left
(righ) invariant if it is invariant under μ -+Lμ(μ —*Rμ). If we set
#(3J) = {/e2TC*:/0") = 0 for every μe$}, then 3 ~ JV(^) defines a
one-to-one correspondence between the set of all closed right (left)
ideals £5 of 9ft and the set of all weak-* closed left (right) invariant
subspaces of 2ft*.

DEFINITION 3.1. If μ ~+ Tμ is a representation of 2ft on 21, then
an element f e 21 will be called almost periodic (under μ —> Tμ) if
{Tμξ: /^e2ft, \\μ\\ ^ 1} has compact closure in the norm of 21. If
{T/(f:^e2ft, I \μ \ | ^ 1} has compact closure in the weak topology of
2ί, then ζ will be called weakly almost periodic. If every ζ e 21 is
almost periodic (weakly almost periodic), we will say that μ—>Tμ is
an almost periodic (weakly almost periodic) representation. An element
/e2ft* will be called left almost periodic (left weakly almost periodic)
if it is almost periodic (weakly almost periodic) under μ—>Lμ and
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right almost periodic (right weakly almost periodic) if it is almost
periodic (weakly almost periodic) under μ—>Rμ.

The above definitions are adaptations of definitions used in [4].
LEMMA 3.1. If μ —* Tμ is a weakly almost periodic representation

of Tt on 21, then there is a map x —> Tx of X into Z?(2ί) such that
x —• Tx is continuous from X to B(%) with the weak operator topology

and v(Tμζ) = \ η(TJ)dμ(x) for μ e 9ft, f e 21, and )?e2I*. If μ -> Tμ

is almost periodic, then x —» Tx is continuous from X to 5(31) with
the strong operator topology.

Proof. For fixed ξ e 21 denote the map μ -> Tμζ by ψ. Then φ**
is a map from 9ft** = M(X) into 21** which is continuous from the
weak-* topology on M(X) to the weak-* topology on 2ί**. The weak-*
closure of the unit ball of 9ft in M(X) is the unit ball of M(X) and
s o | * * maps this onto the weak-* closure in 21** of

{fμ: μem,\\μ\\£l} = {Tμξ: μ G 9ft, || μ || ^ 1} .

However, since μ—>Tμis weakly almost periodic {Tuξ: μ e 9ft, jj μ || ^ 1}
has weakly compact closure in 21 and so its closure in 2ί agrees with
its weak-* closure in 21**. Thus, the range of φ** lies in 21. If
XeM(X), we denote τ/τ**λ by Uλξ. Clearly Uλξ depends linearly on
ξ, and λ —> Uλ is a bounded linear map of M(X) into 5(21) which is
continuous from the weak-* topology of M(X) to the weak operator
topology of B(%). If we set Tx = Uδχ where dx is the point mass

at x, then the continuity of X-~>Uλ implies rj(Uλξ) = 1 τj(Txξ)dX(x)

for \eM(X), f e 21, and η e 21*. Since Tμ = Uμ for μeύ, the map
x —-> Tx has the required properties.

If μ-+Tμ is almost periodic, then the map -f** of the above
argument carries the unit ball of M(X) onto a norm compact subset
of 21. On this set the weak and norm topologies agree. Hence ψ**
is continuous, on the unit ball of M(X), from the weak-* topology
of M(X) to the norm topology of 21. It follows that x —> Tx is
continuous from X to Z?(2ί) with the strong operator topology.

In the following lemma φ: 3K 0 M —> 9ft denotes the multiplication
map of 9ft, as in §2.

LEMMA 3.2. / / / G 9 J Ϊ * = C(X) then the following statements are
equivalent:

(1) φ*fe C(X x X) (C"(X x X));
(2) f is left almost periodic (left weakly almost periodic);
(3) f is right almost periodic (right weakly almost periodic);
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(4) there is an almost periodic (weakly almost periodic) repre-
sentation μ—^TμOfWlona Banach space 21 and {ζ e 21, η e 21*} such
that f(μ) = η(Tμξ).

Proof. We shall show that (1) => (2) => (4) => (1). Since statement
(1) is symmetric it follows that (1) <=> (3) is also true.

To show that (1) implies (2) we note first that if φ*fe Cω(X x X)

and μe$Jt, then Lμf{x) = 1 φ*f(x, y)dμ(y), since
)x

Lμf(v) = f(vμ) = \^Ψ*f&> V)dμ(y)dv(x)

for v e 2ft. Also, if φ*fe CW(X x X), then the map y — (<p*f)y, where
(<P*f)v(χ) = φ*f(x> y)t i s continuous from X to C(X) with the topology
of pointwise convergence on X. By Grothendieck's weak compactness
theorem (cf. [7], Th. 5), y—»(φ*f)y is also continuous from X to C(X)
with the weak topology. It follows that if we define Uλf(x) —
1 l φ*f(x,y)dX(y) for XeM(X), then X-+Uλf is continuous from
}x]x

M(X) with the weak-* topology to X with the weak topology. Since
the unit ball of M(X) is weak-* compact and Lμ = Uμ for μ e SK, we
have that {Lμf: μeM, \\ μ\\ ^ 1} has weakly compact closure in C(X).
Hence / is left weakly almost periodic. If φ*feC(X x X), then the
map y —*'(φ*f)y is continuous from X to C(X) with the norm topology,
the map X-^Uy is continuous from M(X) with the weak-* topology
to C(X) with the norm topology, {Lμf: μ e ffll, \\ μ || ^ 1} has norm com-
pact closure, and / is left almost periodic.

To show that (2) implies (4) we first assume that Wl has an
identity ζ. If / is left almost periodic (left weakly almost periodic),
then the norm closure 21 in 2K* of {Lμf: μe-OJl} is a left invariant
subspace of 2ft* in which every element is left almost periodic (left
weakly almost periodic). Therefore, the representation μ—+Lμ, re-
stricted to this subspace, is an almost periodic (weakly almost periodic)
representation of Tt. Furthermore, we have that

f(μ) - f(ζμ) = (Lμf)(ζ) .

If SW does not have an identity, we go to the algebra W obtained
by adjoining an identity ζ to 2ft. If X' is the standard domain of
2ft', then X' = X U {%<>}, where x0 is a discrete point of X' and ζ is
the point mass at xQ. We may identify 2ft* = C(X) as the space of
functions in (2ft')* = C(X') which vanish at xQ. It follows that / is
left almost periodic (left weakly almost periodic) as an element of 2ft*
if and only if it has the same property as an element of (2ft')*.
Replacing 2ft by 2ft' in the above paragraph leads to the conclusion
that (2) => (4) in general.
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That (4) => (1) follows from Lemma 3.1, since f(μ) = η(Tμζ) implies
that f(x) = η(Txζ) and φ*f(x,y) = τj(TxTyζ). Since multiplication in
the unit ball of 2?(2l) is separately continuous in the weak operator
topology and jointly continuous in the strong operator topology; we
have <p*fe Cω(X x X)(C(X x X)) if μ -> Tμ is almost periodic (weakly
almost periodic).

Theorem 2.2 may be restated in terms of the representations
μ-+Lμ and μ—>Rμ as follows:

THEOREM 3.1. If A is a subset of 3K*, then A = Aθ for some
compact realization θ of Έi if and only if the following conditions
hold:

(1) A is a closed subalgebra of 3K* which is closed under
conjugation and contains the constant functions,

( 2 ) every fe A is weakly almost periodic,
(3) A is invariant under both the right representation μ —> Rμ

and the left representation μ—*Lμ of SK on 3K*.
The semigroup S is jointly continuous if and only if every

feA is almost periodic.

Proof. In view of Theorem 2.2 and Lemma 3.2, we need only
show that in the presence of the other conditions, condition (2) of
Theorem 2.2 holds if and only if condition (3) of Theorem 3.1 holds.
To see this, recall that in the proof of Lemma 3.2 we showed that if

/ is weakly almost periodic and we set Uλf{x) — \ φ*f{x, y)d\(y) for

λ G M(X), then Uμf = Lμf for μ e Tt and the map λ —> Uλf is con-
tinuous from M(X) with the weak-* topology to SW* with the weak
topology. Thus, if A is a closed subspace, it follows that LμfeA
for every μ e 2ft if and only if UλfeA for every λ e M ( I ) ; and this
holds if and only if (φ*f)x e A for every x e X, where (φ*f)x(y) =
φ*f(x, y). An analogous argument shows that Rμfe A for every μeWl
if and only if (<p*f)x e A for every x e X. Hence A is both left and
right invariant if and only if feA implies (φ*f)x e A and (φ*f)x e A
for x e X.

A standard theorem in the study of group algebras is that every
representation of such an algebra on a reflexive Banach space is
induced by a representation of the underlying group (cf. [11], §32).
We now develop an analogue of this result.

DEFINITION 3.2. A representation of a topological semigroup S
on a Banach space 21 is a bounded homomorphism s —+ Ts of S into
the multiplicative semigroup of B{%) such that s —• Ts is continuous



NONCOMMUTATIVE CONVOLUTION MEASURE ALGEBRAS 821

from S to J?(2I) with the weak operator topology. If s —> Ts is con-
tinuous from S to 1?(2I) with the strong operator topology, then s —>
Ts will be called a strongly continuous representation.

DEFINITION 3.3. If μ —> Tμ is a reprsentation of M on 21 and θ
is a realization of Tt on S, then μ-+Tμ will be called ^-induced if
there is a representation s —* Γs of S on 2ί such that

37(2^) = ( r](Tsζ)dθμ{s) for £ e 21,

If s —> Γβ is strongly continuous, then μ —• 2^ will be called strongly
^-induced.

THEOREM 3.2. If μ~> Tμ is a representation of W on 21 αwd 0
is α compact realization of 3K cm S, ίfcew μ-^ Tμ is θ-induced if
and only if μ —• Γ^ is weakly almost periodic and each element
feWl*, of the form f(μ) = η(Tμξ) for ζe% and ^e2ί*, is in Aθ.
Also, if μ —> Tμ is Θ-induced, then it is strongly Θ-induced if and
only if μ—*Tμ is almost periodic.

Proof. Since Θ*: C(S) —> Ao c C(X) is a *-algebra isomorphism, it
is induced by a surjective map a from X to S. Then A^ consists of
those elements /e9K* of the form f(x) = g(a(x)) for geC(S), i.e.,
those elements /e3K* for which a(x) = a(y) implies f(x) = /(?/). If
μ —> Tμ is weakly almost periodic, let x —> Tx be the map from X to
B(2I) given by Lemma 3.1. If for each ξ e 21* the element /e9K*,
defined by f(μ) = η(Tμζ), is in A, then a{x) = α(τ/) implies ^(Γ^ί) =
/(^) = /(I/) = y(Tyξ). It follows that a(x) = a(y) implies Γ, = Ty, and
a; — Tx defines a map s -> Γs of S into β(2I) such that Γ, = Ta{x). Then

f) = ί η(Txξ)dμ(x) = ί 7](Tsξ)dΘμ(s)
JX JS

for /J e SK, ί e 21, ̂  e 21*. The map s —• Ts is continuous into J5(2l) with
the weak operator topology since x—>Tx is continuous. That s —> Γs

is a homomorphism follows from the equations

η{TsTtξ)dθμ{s)dθv{t) = η(TμTvξ)

= y(Tμ.uξ) = \ \ r](Tstζ)dθμ(s)dθv(t)
JSJS

for μ, vem, feSl, )ye2I*.
If μ-+Tμ is almost periodic, then # —> Tx and thus s —> Ts are

continuous maps into J5(2ί) with the strong operator topology.
Conversely, if μ-*Tμ is ^-induced, then there is a representation

s -> Ts of S on 21 such that
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7]{Tμξ) = ( 7)(Tsξ)dθμ(s) for μ e SR, £ e 21, η e 2ί* .

Since S is compact, it follows that μ—*Tμ is weakly almost periodic,
and if s —> Ts is strongly continuous, then μ-*Tμ is almost periodic.
If f(μ) = η(Tμξ), then f(x) = g(a(x)) where g is the function in C(S)
defined by g(s) = η(Tsζ). Thus / e A* and the proof is complete.

We can now state our main theorem.

THEOREM 3.3. There are compact semigroup realizations ω: 9K —•
M(Sω) and σ: 2K —>M(Sσ) such that the following conditions hold:

( 1 ) Aw is the space of all weakly almost periodic functions in
2Dΐ* and Aσ is the space of all almost periodic functions in Wl*;

(2) Every weakly almost periodic representation of Wi is co-
induced and every almost periodic representation of Wfl is strongly
σ-induced;

( 3 ) Sσ is jointly continuous.

Proof. It follows from Lemma 3.2 that the spaces of almost
periodic and weakly almost periodic functions are *-subalgebras of
W* containing the identity. Both subalgebras are clearly invariant
under each Lμ and each Rμ. Hence, the theorem follows directly from
Theorems 3.1 and 3.2.

COROLLARY. Every representation of W in a reflexive Banach
space is ω-induced. Every representation ofΊSlina finite dimensional
Banach space is σ-induced.

COROLLARY. A CM.A. 2JI has a strict compact realization if
and only if the weakly almost periodic elements of Wl* are weak-*
dense. It has a strict compact realization on a jointly continuous
semigroup if and only if the almost periodic elements of 9K* are
weak-* dense.

If there are sufficiently many representations of SK in reflexive
(finite dimensional) Banach spaces to separate points of 9K, then 9K
has a strict compact (jointly continuous) realization.

Note that Theorems 2.3 and 3.2 imply the realizations ω: Tl —*
M(Sω) and σ: Wl —> M(Sσ) are maximal compact and compact jointly
continuous realizations in the obvious sense. That is any compact
realization of Sft can be factored through ω and any compact jointly
continuous realization can be factored through σ.

We now turn briefly to the study of *-representations of a convo-
lution measure algebra HJΐ with involution. It is natural in this
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situation to insist that the involution respect the L-space structure
of m.

DEFINITION 3.3. A convolution measure algebra with involution
is a convolution measure algebra SK with an algebra involution μ —* μ*
which satisfies the following additional condition: if μr = μ* (the
complex conjugate of μ*), then μ —> μr is an L-homomorphism of Tt
onto m.

If G is a locally compact group, then M(G) is a convolution measure
algebra with involution, where μ*(E) = μ{E~ι). Here the L-homo-
morphism μ—*μ' is defined by μ'(E) = μ(E~ι). More generally, let S
be a locally compact topological semigroup with an involution s —* s',
i.e., a map s-+s' which is a continuous anti-isomorphism of S with
s" - s. If we set μ'(J£) = μ(£") and μ* = ~μf, then Λf(S) becomes a
convolution measure algebra with involution.

Throughout the remainder of this section, 9K will denote a fixed
convolution measure algebra with involution. A ^-realization of M
will be a realization θ on a semigroup £ with involution s —> s' such
that θμ*(E) = θμ(E'). We shall obtain a result relating *-realizations
to *-representations of 9Dΐ on a Hubert space H.

LEMMA 3.3. There are natural involutions on Sω and Sσ such
that ω and σ are ""-realizations.

Proof. The map μ —> μf = μ* is an L-homomorphism and, hence,
it induces an algebra isomorphism /—»/' on C(X) such that f{μf) =
f'(μ). The lemma will follow if we can show that Aω and Aσ are
invariant under this isomorphism. The required involution s —> s' on
Sω (resp. Sσ) is then induced in the obvious manner by /—>/' on
Aω ~ C(SJ (resp. Aσ ^ C(Sσ)).

Let a; —> a?' denote the homeomorphism of X such that /'(#) = f(x').
lί fe Aω then by Lemma 3.2, φ*fe Cω(X x X). A simple computation
shows that the function g(x, y) = φ*f(y', x') on X x X determines the
linear functional φ*f on SW (g) Wl. It now follows from Lemma 3.2
that / e Aυ implies / ' e Aω and / e i f f implies f'eAσ. This completes
the proof.

DEFINITION 3.5. Let Ap be the closed linear span in 9K* = C(X)
of linear functionate of the form f(μ) = (A;Λ, λ), where μ—> Aμ is a
*-representation of 1 on a Hubert space H and he H. Let A be
the closed linear span in SK* of the functionals of the form f(μ) =
(Â Λ, A) such that μ —> Aμ is an irreducible *-representation of Wl on
ί ί and he H.
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The functionals described above are the states and pure states
respectively of the *-algebra 3K. Note that At<zApa Aω, since a
Hubert space is reflexive.

If S is a semigroup with involution s —»s', then a * -representation
of S on a Hubert space H is a weakly continuous homomorphism
8 —> Us of S into the multiplicative semigroup of B(H) such that Us, =
?7g*. If /ί —»A^ is a *-representation of 3K, then by the first corollary
to Theorem 3.3 it is induced by a representation s -^ Us of Sω. It is
clear that s —• Z7β is a *-representation of Sω. Hence, *-representation
of 3K are all induced by *-representation of Sω. Similarly, irreducible
^-representations of -3JI are induced by irreducible ^-representations of
Sω. However, there may not be enough *-representations (or irre-
ducible * -representations) of Sω to separate points. One can obtain the
following result by factoring out equivalence relations in Sω:

THEOREM 3.4. There are compact *-realizations p and c of 9K
on semigroups Sp and Sc respectively, such that:

( 1 ) Ap = p*C(SP) and A, = ^ C ( ^ ) ;
( 2 ) the *-representation of 9K are all p-induced by ^-represen-

tations of Sp and the irreducible *-representations of 3K are all t-
induced by irreducible *-representations of Sc;

( 3 ) the *-representations of Sp separate points in SP and the
irreducible *-representations of Sc separate points in Sc;

( 4 ) p and c have the same kernel.

Part (4) of the above theorem follows from the fact that the
weak-* closed convex hull of the set of normalized pure states is the
set of all normalized states (cf. [14]).

An interesting problem in connection with Theorem 3.4 is the
following: when is it true that the involution on Sp or Se is normal
in the sense that s's = ssf for all s? If a semigroup S has a normal
involution and s —> Us is a *-representation of S, then each Us is a
normal operator, Up is a projection if p e S is an idempotent, an Us

is a partial isometry if s lies in a subgroup of S. Obviously then,
the study of *-representations of a semigroup S will be considerably
simpler if S has a normal involution.

4* Conclusions and problems* We do not have satisfactory
conditions on an abstract convolution measure algebra 3K which guaran-
tee that SK has a strict realization on a compact semigroup. This
seems to be a hard problem. However, from our point of view it is
largely irrelevant. The theory initiated here is intended for use as a
tool in the study of the representation theory of specific convolution
measure algebras such as M(G). As is the case with M(G), one may
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expect to have a-priori knowledge that the algebra he is studying has
sufficiently many representations in a reflexive Banach space to separate
points. Of course, the algebra then has a strict realization on Sω by
the second corollary to Theorem 3.3.

Given the work we have done here, one should now be able to
use the structure theory of compact semigroups and semigroup re-
presentations both as a tool in proving results about convolution measure
algebras (such as M(G)) and as an intuition aid in deciding what these
results should be. The monograph of Berglund and Hofmann [1] and
the fundamental paper of Glicksberg and DeLeeuw [4] should be
useful in this connection. We shall leave this project to someone else.

If θ: -3Jl~+ M(S) is a compact semigroup realization then there are
some trivial results concerning the connection between structure in 9K
and structure in S that can be carried over directly from results in
[22] for the commutative case. We will close by mentioning some of
these without proof.

If 3K has an approximate identity {μa} with || μa || <£ 1 (or μa :> 0)
for each α, then S has an identity (cf. [22], Theorem 3.1).

If every one-dimensional representation of Tt is ^-induced, then
there is a one-to-one correspondence between prime L-ideals of 9K
and open-compact prime ideals of S0 (cf. [22], Th. 3.2).

If 9K — L\G) for a locally compact group G, then Sω is the
weakly almost periodic compactification of G and Sσ is the almost
periodic compactification of G (cf. [22], § 4). If 2K = M(G) then Sω and
Sσ contain as closed ideals copies of the corresponding semigroups for
L\G) (cf. [22], §4).
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