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THE CLOSED PRIME SUBGROUPS OF CERTAIN
ORDERED PERMUTATION GROUPS

STEPHEN H. MCCLEARY

The group G = A(2) of all order-preserving permutations
of a chain 2 becomes a lattice-ordered group when ordered
pointwise, i.e., f =< g if and only if 8f < Bg for all 3¢ 2. Lloyd
showed that for each wc 2, the stabilizer subgroup G. =
{9e G|wg = w} is a closed prime subgroup of G. Our main
result (Theorem 11) states that besides G itself, these subgroups,
together with the stabilizer subgroups of Dedekind cuts of 2,
comprise all of the closed prime subgroups of G.

Actually, G need not be all of A(2). In §2, we use Lloyd’s result
to show that for depressible or complete subgroups G of A(Q), all
stabilizer subgroups are closed. We find in § 3 that every closed convex
l-subgroup C of G is of the form C = {ge G | dg = 4} for some collection
4 of points and cuts of 2. In §4 we prove the main theorem (stated
above) for depressible groups. Finally, this theorem is applied to the
question of the extent to which the Il-group G determines the chain
2, which was first considered by Holland [4]; and to the determination
of the l-automorphisms of G, considered by Lloyd [5].

2. Stabilizer subgroups. Let Q be a chain. A permutation g of
Q is said to preserve order if a < B implies ag < Bg for all «, Be L.
The group A(2) of all order-preserving permutations (o-permutations)
of 2, ordered pointwise, is a lattice-ordered group (I-group). A(Q) is
not assumed to be transitive. For elementary information about I-
groups, see [1].

0Q will denote the completion of 2 by Dedekind cuts (without end
points unless these end points belong to 2). We shall consider 2 to
be a subchain of 2. Each ge A(Q) can be extended to 2 by defining
@g(@e Q) to be sup{Bg|BeR,B < d. Thus AQ) can be considered
to be an l-subgroup of A(R), i.e., a subgroup which is also a sublattice.

Let G be an l-subgroup of A(2), and thus also of A(2). G, or
more properly the pair (G, 2), is called an ordered permutation group.
Holland [3, Th. 2] showed that every abstract I-group L is l-isomorphic
to such a G. A subgroup H of G is convex if h, < g < h,, with h, h,e¢ H
and g € G, implies g€ H. H is a prime subgroup of G if H is a convex
l-subgroup of G and if g, A g. =1, with g, g,€ G, implies g, € H or
g.€ H. For @eQ2, we define the stabilizer subgroup G to be

{9eG|owg = @},
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a prime subgroup of G. Thus we have a stabilizer subgroup for each
Dedekind cut of @ (not just for points of Q).

We wish to consider two classes of [-subgroups G of A(Q) for
which the stabilizer subgroups G; are closed, i.e., if s = sup{s;| 7€ I},
with se€ G and s; € G; for each 7 in an index set I, then seG;.

For ge A(2) and v e Q such that vg # v, the interval of support
I(g, v) of g which contains v is {8e€ 2]|v9™ < B8 < 79" for some integers
m and n}. An [l-subgroup G of A(R) will be called depressible [7]
if it shares with A(Q) the following property: If 4 is an interval of
support of ge G, so that 4g = 4, then there exists e @G such that
Bh = Bg if Bed, but Bh =B if B¢ 4. Intuitively, h is obtained by
depressing g outside 4. As noted in [7], convex [-subgroups of A(Q)
are depressible.

G is a complete l-subgroup of A(2) if whenever ge G is the sup
in G of a collection {g;|7€ I} of elements of G, then ¢ is also the sup
in A(Q) of {g;|7e€I}. By [2, Th. 3.10], an abstract. l-group L is I-
isomorphic to a complete l-subgroup G of some A(Q) if and only if L
is completely distributive, i.e., if Aicr Viex 9ir = Vrexr Aier Giswy for
any collection {g;, |7 €I, ke K} of elements of G for which the indicated
sups and infs exist.

THEOREM 1. Suppose G 1is a depressible or complete l-subgroup
of A(Q). Then for each @e Q,G; is a closed prime subgroup of G.

Proof. Lloyd [6, Th. 2] proved that if G = A(2), then the stabili-
zer subgroups G, of points we 2 are closed. As noted in [7], Lloyd’s
proof also works when G is a depressible I-subgroup of A(Q). If (G, Q)
is depressible, the extension (G, 2) is also depressible. But G; is the
stabilizer subgroup of a point for the group (G, 2), and hence must
be closed. On the other hand, suppose that G is complete. If s =
sup {s; |2 € I}, with se G and each s;eG;, then since G is complete, s
is also the sup in A(Q) of {s;|t e I}. Since the stabilizer subgroups are
closed for A(Q), @s = ®, and then se€G;. Hence again G; is closed.
(Incidentally, by [7, Th. 7], if G is transitive on 2, then G is complete
if and only if the stabilizer subgroups G; are closed.)

A word of warning: A(Q), extended to 2, need not be all of A(Q).
Thus the above proof, even for G = A(2), does not work without the
introduction of the concept of depressible groups.

3. The closed convex [-subgroups of G. In this section we
determine the closed convex [-subgroups of G, where G is an [-subgroup
of A(Q) which is either depressible or complete. If C is a subgroup
of G, we define FzC to be {Tec2|7C = T}, the collection of points
in 2 fixed by C. By the convexification Conv (4) of a subset 4 of 2,
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we shall mean {8e¢2|¥ <8 <4 for some 7,6 ¢cd}. If C is a subgroup
of G and @ e 2\FxC, we define the orbital of C containing @ to be
Conv (wC).

LEMMA 2. If an orbital I' of C s bounded above, then
sup I" € FxC ; and dually.

Proof. I'C =1, so (supI)C =sup/.

If L is any l-group and C is a convex l-subgroup of L, then the
closure C* of C means the smallest closed convex [l-subgroup of L
which contains C.

THEOREM 3. Suppose that G 1s a depressible or complete [-sub-
group of A(Q) and that C is a convex l-subgroup of G. Then C* =
{9eG|wg = @ for all @ e FxC}.

Proof. Let D={geG|wg= 0w for all we FxC}. Then D =
N{G, |@e FxC}, so D is a closed convex [-subgroup of G. Certainly
c*< D.

Now pick any 1 <geD and any SefR. Conv (BC*) = Conv (8D),
for otherwise the lemma would imply that either sup (8C*) or inf (3C*)
would be an element of FxC*\FxD. Hence there exists fe C* such
that Bg < Bf. Thenl<(gAN f)V1IZfVvleC* so (g f)V1eC*
and B8((g A f) V1) = Bg. Thus for each Be®, there exists an s, € C*
such that Bs; = Bg and s; < ¢g. Hence g = sup{s;| 8¢ R}. Since C*
is closed, g C*. Since g was an arbitrary element of D, we have
shown that C* = D.

COROLLARY 4. Suppose that G is a depressible or complete l-sub-
group of A(Q). Then the closed convex l-subgroups of G can be
characterized as those subsets C of G for which there exist 4, = 2
such that C = {ge G|dg = @ for all @ed,}. Moreover, every closed
convex l-subgroup of G is the intersection of a collection of closed
prime subgroups G, of G. Hence the maximal closed convex [-sub-
groups of G (if any) must be prime.

COROLLARY 5. Let L be a completely distributive abstract l-group.
Then every closed convex l-subgroup of L is the intersection of a
collection of closed prime subgroups of L; and the maximal closed
convex l-subgroup of L (¢f any) are prime.

Proof. By [2, Th. 8.10], L is l-isomorphic to a complete subgroup
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G of some A(Q).

4. The closed prime subgroups of G. We now develop the
tools needed to determine (for the depressible case) that of the closed
convex [-subgroups of G, those which are prime are (besides G itself)
precisely the stabilizer subgroups. First we establish some preliminary
results which apply to any l-subgroup G of A(Q). Let us define two
binary relations on 2: @F7 (read @ fixes 7) if 7 e FxG,;, and @M7T
(read @ moves 7) if T ¢ FaG,.

As a strong hint that the only closed prime subgroups of G are
the stabilizer subgroups G, we have

ProrosiTioN 6. If ®M7 and TMo, thern G;: = G, N G: is not
prime.

Proof. Since wM7, we may pick 1 < geG; such that 7g > 7;
and since TM®, we may pick 1 < heG: such that @k > @. Then
9 N\ h€G;,: while neither g nor % lies in G, -, so G;,: is not prime.

ProrosiTiON 7. OFT if and only if G; = G:. Hence G; = G- if
and only if ®F7 and TF®.

LEMMA 8. Suppose I' is an orbital of Gz, T € 2. Then for geG,
g is an orbdital of G-,.

Proof. I = Conv (#G:) for some @e 2, so I'g = Conv (0#G=g) =
Conv ((@9)(97'G=g)) = Conv ((®9)Gx,).

LEMMA 9. Suppose I' is an orbital of G-,TeQ. If Tg=Th,
with g, he G, then I'g = k.

Proof. 1f Tg=7h, then gh' € G:, so I'gh~ = I (since /" is an orbital
of G:), and thus I"'g = k.

By an o-block of G, or more properly of (G, 2), we mean a non-
empty convex subset 4 of 2 such that for any geG, either dg = 4
or dg N4 =[]. (] denotes the empty set.) An o-block is ¢rivial if
it contains only one point.

LEMMA 10. If ®F7, but TM®, then the orbital I" = Conv (@G7)
of G: is a montrivial o-block of G. For geG,I'g =1 if and only
’if ge G;.

Proof. If ge G-, thenI'g =71 =1 by Lemma 9. We now show
that if 7 < Tg, then I'g NI = []. If not, we use Lemma 8 to pick
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h € Gz, such that (wg)hel"'g NI, and then we pick ke G; such that
(wgh)k < @. Then @(ghk /1) = @, but 7 <7Tg =7Tgh, so T =Tk <
Tghk < 7(ghk \/ 1). This contradicts the assumption that @F7. Simi-
larly, if T > 79, I'gnN T = [].

MAIN THEOREM 11. Suppose G is a depressible l-subgroup of
A(Q). Then the closed prime subgroups of G (besides G itself) are
precisely the stabilizer subgroups G-, @ € 2.

Proof. By Theorem 1, the G3’s are closed prime subgroups of G.
Now let C be any closed prime subgroup of G. By Corollary 4, C =
{9eGlovg = @ for all weFxC}. If FxC=[],C=G. Now suppose
FxC+[]. For each @ ¢ FxC,C =G5. In any l-group, the collection
of convex l-subgroups containing a given prime subgroup is a chain
under inclusion [3, Lemma 3], so & = {G;|®wec FzC} is a chain.
Moreover N .~ = C.

If for Gz, G. € .& we have G; C G: (i.e., if ®F7, but TM®), then
by Lemma 10, 4(@,7) = Conv (@G>) is a nontrivial o-block of G. We
show next that 4(@, 7) is independent of @. For suppose that also
G-¢.% and G- = G5. Then Ged(®,7), for otherwise we could pick
heG: such that @h # @ and depress h outside 4(@, T) to obtain an
element of G; which moves @, contradicting the fact that 6F@. Since
ded(@,T), (G, T) = Conv (6G5) = Conv (@G:) = A(®, 7). Hence we may
write 4(@,7) simply as 4(7); and {4(T)|G; € .&*} forms a tower under
inclusion. Let 6(7) = sup4(7) and let & = inf {6(7) | G: € .&*}. Since C
fixes each 7 such that G: € .57 it fixes each 4(7) (by Lemma 10) and thus
each 6(7), so it fixes £. Conversely, since & € 4(7) whenever G;C Gz, we
have Ze 4(7). Since also 4(7) is an o-block of G, G: fixes each 4(%).
Hence by Lemma 10, G; fixes each 7. Therefore G; = {gcG|dbg =@
for all @ e FxC} = C. This concludes the proof.

Theorem 11 fails when completeness is substituted for depressibility,
even under the additional assumption that G is transitive. However,
examples of this phenomenon are too complicated to be presented here.
The author is presently trying to find additional hypotheses under
which the modified theorem will hold.

By Zorn’s lemma, every closed prime subgroup of G contains a
minimal closed prime subgroup of G, which is characterized by

COROLLARY 12. G5 1s a minimal closed prime subgroup of G if
and only if for all Te 2, @KM7T implies TMa.

We define Min (2) to be {®@ e 2 |G- is a minimal closed prime sub-
group of G}.

THEOREM 13. Suppose that G is a depressible l-subgroup of A(Q)
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and that for each a€ 2, G, has no fixed points in Q2 except «. Then
(G5 | @ e Min (2)} are distinct and include all G.’s, a € 2. Moreover,
@ € Min (2) if and only if TM® for every @ + T ¢ Q2.

Proof. Suppose that G; S G,, withaecQanda+avc. If ®ec,
then @F« contradicts our hypothesis. Hence @ € 2\2, so we may pick
Be 2 lying strictly between a and @. Then by hypothesis, we may
pick k€ G, such that ah #* «. By depressing % outside the interval of
support I(h, @), we obtain an element of G which moves «, but fixes
@; contradicting the assumption that G; & G,. This shows that G, is
minimal, and moreover that G, # G5 for a + @ € .

Now let @ < 7, with ®, 7 € Min (2), and suppose that G; = G-.
Pick @ e Q such that ® < « £ 7. Since G5 is minimal, G, & G5, and
by the previous paragraph, G, +# G;. Hence we may pick ke G, such
that @k = @. By depressing k outside I(k, @), we obtain an element
of G which moves @, but fixes 7; contradicting the assumption that
G; = G=. Hence {G;| @ < Min (2)} are distinct. The last part of the
theorem now follows from Corollary 12.

5. The relation between the l-group G and the chain 2.
Suppose now that the hypotheses of the last theorem are satisfied. We
wish to determine how the chain Min (2) is reflected in the [-group
structure of G. The theorem gives us a one-to-one correspondence
@ — G- between Min (2) and the collection of minimal closed prime
subgroups of G. Ideally, we would like to use the l-group structure of
G to order these minimal closed prime subgroups so as to make this
correspondence be an o-isomorphism (preserve order both ways). In
general, this program will only partially succeed.

(G, Q) and (H, ) are said to be tsomorphic as o-permutation groups
if there is an o-isomorphism # from Q onto X and a map + from G
onto H such that (ag)d = (ab)(gy) forall «e 2,9 G. (It then follows
that + is an [-isomorphism.) By the characteristic chains of (G, Q)
we shall mean the orbits @G of G (no convexification this time), for
which @ € Min (2). Of course, if @ ¢ Min (2), then @G & Min (2) since
G;, = 97'Gzg. The characteristic chains of (G, Q) partition Min (2),
and a subcollection of them partitions 2. In particular, (Min (2))G =
Min (2), and G is faithful on Min (2) since 2 & Min (2). The closure
of a characteristic chain will refer to the order topology of Min (2);
or equivalently, since Min(2) is dense in 2, to the order topology of
Q. The closure of any one characteristic chain is of course a union
of characteristic chains.

THEOREM 14. Suppose that (G, 2) and (H,2X) both satisfy the
hypotheses of Theorem 13, and that + is an l-group tsomorphism
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from G onto H. Then there is an o-isomorphism 6 from Min (2)
onto Min (X) such that 6 and + provide am o-permutation group
wsomorphism from (G, 2) onto (H,2). (Euxception: The order of &
and T mneed mnot be preserved wumnless there is some characteristic chain
of (G, Q) whose closure contains them both.) 6 preserves characteristic
chains and closures of characteristic chains. With the above exception,
X 1s o-isomorphic to the union I' of a collection of characteristic chains
of (G, ), and (H, X) is isomorphic as an o-permutation group to (G, I').

Proof. We wish to (almost) determine the order of Min (2) from
the I-group structure of G. Since G; (@ € Min (2)) is a prime subgroup
of G, we can totally order the set R(G;) of cosets Gzg (g € G) by defining
Gz9 < Gk if and only if there exist se G;g and t € Gzk such that s <¢
[3, Lemma 4]. It is easily checked that the correspondence G;g — &g
is an o-isomorphism between R(G3) and the characteristic chain ®G.
Moreover, (Gz9)k = G5(g9k) — @(gk) = (Wg)k, ke G.

Now let 4 be a characteristic chain of (G, 2) and let (4, 4,) be a
Dedekind cut of 4 such that 4, has no greatest element and 4, no least
element. Let 6, be the sup in 2 of 4, and 4§, the inf in 2 of 4,. Let
G'={geG|dg =4, and L9 = 4). Then G5, =G = G;,. Hence G
is a minimal closed prime subgroup of G if and only if there exists
7 € Min (2) lying in the closure of 4 and satisfying 4, < 7 < 4,. (If
there exists such a 7, then 7 =4, or 0,, say d,; so that G’ = G;, = G:
is minimal.) Moreover, if G’ is minimal, then since G; = G;,, Theorem
13 guarantees that J, = J, and thus that 7 is unique. Thus the closure
of 4 in Min (2) is determined by the I-group structure of G. (Of course,
neither the sup nor the inf in 2 of a nontrivial 4 can lie in Min (2).)
Similar considerations apply to (H, X). For @ e Min (2), define @6 to
be the point in Min (3) stabilized by Gzv. The theorem follows.

The limitations of the theorem are illustrated by the following
example. Let X, be an a-set, « = 0,1,2. (An «a-set is a chain 3 of
cardinality ¥, in which for any two subsets I”" < 4 of cardinality
less than YR,, there exists o€ XY such that I" < o < 4.) Let /I, be
the ordinal sum ¥, P 2, P Y,, and /7, the ordinal sum3, P X, P 3.

Let 2;,7 = 1,2, be the lexicographic product [T; J, ordered from the
right, where J denotes the integers. Kach copy of each X, is an
o-block of each A(Q;), whence it is easily seen that A(Q,) and A(RQ,)
are isomorphic as l-groups, despite the fact that Min (2,) and Min (2,)
are not o-isomorphic.

COROLLARY 15. If the l-group G has at least one transitive
representation (K, Il1) of the sort described in the theorem, then the
exception in the theorem can be removed.
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Proof. Since K is transitive, /I is a characteristic chain of (K, II).
The closure of /I in Min (I7) is the entire chain Min (/7). The theorem
yields genuine o-isomorphisms from Min (/7) onto Min (2), and also from
Min (/1) onto Min (5).

For the special case in which G and H are themselves transitive
and have minimal nontrivial o-blocks, this corollary is precisely Holland’s
main result in [4, Th. 7], applied to the depressible case. (Holland’s
result does not assume depressibility and is proved without the use of
closed subgroups.) Further exploration of the transitive case takes on
rather a different flavor and will be pursued in a later paper.

In [3, Th. 2], Holland represents an arbitrary Il-group L as an
l-subgroup G of an appropriate A(2), where the chain 2 is partitioned
into convex subsets 2; such that for each 2,, 2,G = 2, and G is transitive
on ;. If one such representation (G, Q) satisfies the hypotheses of
Theorem 13 (equivalently, if for each £, the restriction (G|2,, 2,
satisfies the hypotheses of Theorem 13), then up to o-isomorphism,
every such representation satisfying those hypotheses involves the
same chains Min (2;).

COROLLARY 16. Suppose that (G, 2) satisfies the hypotheses of
Theorem 13. Then every l-automorphism + of G is induced by an
o-permutation 6 of Min(2), i.e., gy = 0~'g6 for all g G. Moreover, 0
permutes the collection of characteristic chains of (G, 2) and preserves
their closures. 0 ts subject to the exception of Theorem 14. This
exception can be removed under the additional assumption of Corollary
15, and then the present result states that every l-automorphism of
G is induced by an inner automorphism of A(Min (2)).

Proof. (G, Q) and (Gv, Q) satisfy the hypotheses of Theorem 14.
Let 6 be the o-permutation of Min (2) provided by that theorem. Then
(@0)(g) = (wg)d for all @e Min (2), ge@, i.e., gy = g6, and thus
gy = 07'90.

Lloyd [5, Th. 1.10] proved Corollary 16 for the case in which G
is all of A(Q) and is transitive, except that ¢ was an o-permutation
of 2, rather than of the smaller chain Min (2). Lloyd’s proof did not
make use of closed subgroups. In many specific cases (e.g., if Q is
Dedekind complete or is the chain of rational numbers), the last state-
ment in the corollary permits one to deduce (following Lloyd) that
every [-automorphism of A(2) is inner.
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