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ENTIRE FUNCTIONS OF SEVERAL VARIABLES
WITH ALGEBRAIC DERIVATIVES AT

CERTAIN ALGEBRAIC POINTS1

FRED GROSS

The purpose of this paper is to extend certain theorems
on the arithmetic properties of analytic functions due to Straus
to functions of several variables.

Numerous papers have been written on the arithmetic properties
of analytic functions (e.g., Straus [7], Buck [1], Kakeya [3], Selberg
[5]). The author is not aware of any analogous studies for analytic
functions of several variables. Since the generalization from two to
several variables involves no new difficulties that are not already en-
countered in the generalization from one to two variables, we shall
for the sake of simplicity, restrict our discussion to functions of two
variables.

2* Preliminaries • We begin with a generalization of order and
type.

DEFINITION 1. Let f(zly z2) be an entire function of the two vari-
ables. Let M(r19 r2) = M(r) denote the maximum value of | / | on the
surface given by | z{ \ = r^i — 1, 2). (plf p2) is said to be an order point
of /, if for any ε > 0, as rι + r2 approaches infinity

is bounded, while

ikf(r)/exp (rfi + r£2~ε)

and

Λf(r)/exp (r^~ε + rξή

are both unbounded. The set, p, of all such points (pίf ρ2) is called

the order of / .

DEFINITION 2. Let f(z19 z2) be as above and let (ρ19 p2) be one of

its order points. (σ19 σ2) is said to be a type point of / at (pt1 p2) if

for any ε > 0, as r1 + r2 approaches infinity

1 In a dissertation written by the author under the direction of Professor E. G.
Straus and submitted to U.C.L.A. in July 1962, variations of the results in this paper
were proved by a generalization of an argument used by Straus in [7]. The arguments
presented here are somewhat briefer.
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is bounded,

and

while
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Λf(r)/exp ((σ1 +

Λf(r)/exp (σ.r^

M(r)/exp ((σ1
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e)rfi +

• + (σ 2

- ε)rfi

(σ2 + e

- ε)r?»)

+ σtrξ*

are both unbounded. The set of points, σPιP9, of all such points (σ19 σ2) is
called the type of / at (plf p2).

For the sake of simplicity, we add the following.

DEFINITION 3. An entire function f(zlf z2) will be said to have
{(Pi, 0Ί), (p2, ̂ 2)} as an order-type point if (pu p2) is an order point of
/ and (σ19 σ2) is a type point of / at (p19 ρ2). We shall say that (piy σ̂ ) <
(x, y) if either ^ < x or p{ = x and σi < y (i = 1, 2).

We state some lemmas whose proofs are contained in [2].

LEMMA 1. (Generalized Taylor series.) Let f(zu z2) be entire and
let zi5 (i — 1, 2; j" = 1, 2, •) 6β ίwo infinite sequences of complex
numbers whose terms are bounded. Then one may write

( 1 ) /(si, 22) = Σ Σ αWlW2 Π Π t e - «ϋ),
% = 0 Ώ 0 ΐ L j 1

( 2 ) W l W 2 ( 2 7 Γ Ϊ ) 2 J l * ! ^ J | * | = r 2 ^ » i + i
JLL 11 l^ί ~ #ΐj7

r , > m a x | ^ | (i - l , 2 ; i = 1,2, •--) .

Proof. Same as Lemma 2.1 in [2].
When 2<y is a finite set of integers, ai (j = 0, 1, •; kt — 1) and

^2i is a finite set of integers, βά (j = 0, 1, •; &2 — 1) then (1) may
be written as

s=0 i=o ί=0 Λ=0 X 2

V^ Pk9—1/
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ENTIRE FUNCTIONS OF SEVERAL VARIABLES 695

By means of the residue theorem and (2), one obtains

LEMMA 2. If

is integral for (zlf z2) = (ait βά)(i = 0, 1, , kL - 1; j = 0, 1, , k2 - 1)
and for all nonnegative integers nγ and n2, then the coefficients
(^{sk^Duk^D on the right side of (la) are rational numbers whose de-
nominators divide the least common multiple of the quantities

(s-x)l Π (am - asY+^'s Π (am - asγ
+*s(t - y)\

A. - ft)'*1*'* *Π (A. - &)'+« ,

k, - 1 n = 0, 1, , k2 - 1 {x0 + x, + + xkι^ = x,

Vo + Vi + " - + Vk2~ι = y};x = 0,1, -", s and y = 0, 1, t.

Proof. See proof of Theorem 3.6 pages 134 and 135 in [2].
An argument almost identical to this gives the following.

LEMMA 2A. // the a's, β's and partial derivatives in Lemma 2
are algebraic integers, then each of the coefficients is a ratio of two
algebraic integers whose denominator is the least common multiple
of the expressions (3).

LEMMA 3. Let f and ani%2 be as in Lemma 1 and suppose that
{(pu 0Ί)> (ft* 2̂} ^ an order-type point of f. Then the inequality

M(r) < exp (rf1+ε + n°2+ε)

holds for ε > 0 and all sufficiently large (depending on e) rι + r2 if,
and only if, the inequality

( 4 ) I anin91 < Π nτnitιpi+t)

holds for ε > 0 and all sufficiently large (depending on ε) nγ + n2.
Furthermore, the inequality

M(r) < exp ((σ, + ε)π° + (σ2 + e)rζή

holds for ε < 0 and all sufficiently large (depending on ε) r1 + r2 if,
and only if, the inequality

( 5 ) I αM]Λ21 < Π ({epiOt + \nilPi

holds for ε > 0 and all sufficiently large (depending on ε) r1 + r2.

Proof. The proof of this lemma is entirely analogous to the one
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variable case (see e.g. [6]).

3* Main result* We first consider the case where assumptions
are made about the value of the function and its partial derivatives
at a single point.

THEOREM 1. Let f(zlf z2) be an entire function such that

3 i+»*/(0, 0)/dzpdzp = anχn2 ,

where ocnin2 is an algebraic number of degree ^ d for nίy n2 = 0,1, .
Let qni7i2 be a positive rational integer such that qnin2ocnιn2 is an alge-
braic integer. Assume that for some positive numbers A, B, s{ and
U (i = 1, 2) and any positive ε

l 2 = 0((A

and

( 6 ) qni%2

Let

Pio = ((s< + t{)(d - 1) + U + I ) " 1

σί0 = (ePioy\eA^d-l)B-d)^) (i = 1, 2) .

// for some order-type point, {(pu 0\), (p2, σ2)}, of /, there holds

(Pi, °i) < (Pio, oiQ) (i = 1, 2) ,

then f is a polynomial.

Proof. We may write

= Σ
where

Furthermore, it follows from the hypotheses of the theorem that

( 7 ) I g V 2 α V 2 1 = 0((AB + ε)ni+

Assume that / is not a polynomial. Since q%ιnfi%ιn2 is an algebraic
integer, it follows that for an infinite sequence of pairs (n19 n2)

( 8 ) I N o r m qninμnιΎl21 ^ 1 .

Consequently, for these nx and n2

( 9 ) I qnin2anin21 ^ | N o r m qnin/xnin2 \ \ qnin2ocni

— id—i)
n2 I
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Thus, from (6), (7) and (9) we obtain

I Norm q%1%ta%1%% | ^ \aγ*\ ^ Π ((AB + eyd~i)n*

x (B + e)niern*n[{'i+ti){d~1)+ti+1'l*i)) .

On the other hand, it follows from (4) of Lemma 3 that

(11) i5^L<|α K l ) ί 2 |<Π
a

If for i = 1, 2, ft < ft0, then for some positive ε satisfying ft + ε <
ft0 — ε and some positive ε0

nj
niHPi+εϊ < ^-w*N e»+Wd- 1 ) + i* + 1]-eO»i ^ = 1, 2) .

From (10), (11) and (12), one easily concludes that for sufficiently large

nλ + n2

(13) I Norm qnιnμnι%21< 1 .

Thus, in this case, we get a contradiction between (8) and (13).

If p. = p.o and at < ai0 for either i = 1 or i = 2 or both, then
one can similarly use (5) of Lemma 3 (instead of (4)) together with
(10) to again arrive at the contradiction between (8) and (13). This
completes the proof of the theorem.

We now proceed to the case where something is known about the
value of the function and its partial derivatives at several points.

THEOREM 2. Let f(z19 z2) be entire and suppose that for all non-
negative integers nt and n2

is integral for (zί9 z2) = (ai9 bj)(i = 1, 2, , klf j = 1, 2, , k2) with
ctt Φ a5i hi Φ bj for i Φ j , where a{ and bά are integers. If f has an
order type point satisfying

(ft, *i) < (fci, I V(aj)~21)

(ft, σ2)<(k2,

where V{aό) and V{bά) are the Vandermondes of the a)s and tys re-
spectively, then f is a polynomial.

Proof. By Lemma 1, we may write

/ ( Z i , s 2 ) = Σ « Λ l » 2 ( « i ~ « i ) ( « i - α 2 ) ( « i - ani)(z2 - & ! ) • • • (z2 - b%2) .
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where akr.n = an and bk2+n = bn (n = 1, 2, •)• Using Lemma 2 with
s = [W^i] a n d ί = [̂ 2/fc2] (M = greatest integer less than r), one easily
concludes by looking at the expressions (3) that anι%9 is a rational
number expressible as cnιnjdnin2, cnχn2 integers and

dnιn2 = [njkjl [n2/k2]l

If Pi < k-i (i — 1, 2), then using (4) of Lemma 3, we obtain

2

i = i

where Vι and V2 are V{aά) and F(65 ) respectively.
For sufficiently large nL + n2, the right side of (14) is less than

1. Thus, cnι%2 and consequently anχn9 must be zero, so that in this
case, / must be a polynomial. If ft = k{ and ^ < V72 for one of the
values i, then by virtue of (5) Lemma 3

I C ^ K ί ί β A J ^ I ^ + e ) / ^ ) " ^
r " l f v/K'^i) I (second factor) | .

It is easy to see that the first factor on the right side of (15) is less
than 1 for sufficiently large %. The second factor is either of the
same form as the first or has the form of the right factors appearing
in (14). Thus, in any case the right side of (15) is less than 1 for
sufficiently large nL + n2 and the theorem follows.

Instead of considering functions with integral values and partial
derivatives at the integers one can consider more generally functions
whose values and derivatives evaluated at a certain set, F, of alge-
braic numbers are themselves numbers in F.

THEOREM 3. Let f(zLJ z2) be an entire function such that

has the values anχn2ij at the points {zly z2) = {ccif βj); i = 0, , kι — 1,
j = 0, , k2 — 1, aQ = β0 = 0; ah Φ ai2, βh Φ βh when iv Φ i2. Assume
that <xnιnt)iά, Qίi and β3- belong to an algebraic number field K of degree
d for n, — 0, 1, n2 = 0, 1, i = 0, 1, , kλ — 1 and 3 = 0, 1, ,
k2 — 1. Let

(16) M1 = 2 max [

(17) M2 = 2 max | β5
3
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and let c be a positive rational integer such that ca!i\ cβψ are alge-
braic integers for i = 1, •; kx — 1 and j = 1, , k2 — 1, where a^\
β{/](v = 1, •••, d) are the conjugates of a{ and & respectively. Let
Qnin2 be a positive rational integer such that qnin2anin2ij is an algebraic
integer and assume that for some positive reals A1$ s19 s2, B, tly t2

(18) I anin2ij I = 0((A + εy^nl^nrή

and

(19) qnι%i = 0((B + εy^n^n^ή

for

i = 0, 1, , k, - 1; j = 0, 1, , k2 - 1; n, = 0, 1,

and n2 = 0, 1, . Let \ = 2Λί(Λί — 1),

(A{d~1)Bd I Vi \Vki cdλilki)~PiQ

for i = 1, 2.
// / feαs <m order-type point satisfying

(Pi, (?i) < (Pio, oiQ) (i = 1, 2) ,

then f is a polynomial.

Proof. Let f(zlf z2) be given by (1). If anι%2ij1 at and βά were
algebraic integers, then applying Lemma 2A one would be able to ex-
press the coefficients of the series as a ratio of two algebraic integers
cnin2/dnin2 and one would get an upper bound for | cniΛ21 as in the proof
of the previous theorem. From the hypotheses of the theorem one
can also get an upper bound for | cnχU2 \ and subsequently arrive at the
conclusion that | Norm cnγ%2 \ < 1 for sufficiently large nx + n2. Though
in our case ctnιnzi3 , cci9 βό are not algebraic integers, multiplication by
the appropriate rational integers effectively reduces it to the simpler
case just mentioned.

For the sake of convenience let us also express / in the equivalent
form (la) with s = [njk,] and t = [n2/k2]. From the second equation
on page 135 of [2] one can easily verify that one may write

(ΔΌ) ^nλn2

— (d(sk1+l)(tk2
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with

(2i) κ 1 Λ j < π i v* I2CΛ

and cni%2 an algebraic integer of the form

(22) Σ-toW,

where Iz is a positive rational integer satisfying for all I

\L k J L & J

the Tz are products of at most XJ2 terms of the form (α* — α,-)*** and
at most λ2/2 terms of the form (β{ — βόy^ with

and the ηx are one of the numbers amιm2ij with m4 < [^/^] (i = 1, 2).
Using (16), (17) and (18) one can easily show that for each sum-

mand in (22)

O((A + ε)nm^nή0((B + e)n*ntini)) .

The number of summands in (22) does not exceed Π?=i kilnjki] and
hence (23) implies

( 2 4 ) I cuιnt I < Π

O((A + e)n

Using (4), (19), (20), (21) and (24) we obtain for any ε > 0.

(25)

\L ki J L fc, J

x

If Pi<pίύ, then a simple calculation shows that the right side of (25)
is less than 1 for sufficiently large nx + n2 and the desired conclusion
follows in this case. Using (5), (19), (20), (21) and (24) one obtains
similarly
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ftNorm cni%21 ^ ft (l V, |2^/^^i/J! (epfa + s) W «

<26)

If ^ ίg |θί0, i = 1, 2 and ft = ft0, σ{ < c/ί0 for at least one of the i, then
again a simple calculation shows that the right side of (26) is less
than 1 for nγ + n2 sufficiently large and the theorem follows.

The question of generalizing the results of one variable to func-
tions which are not entire, such as meromorphic functions, has already
been suggested by Straus [7]. More generally it would be interesting
to consider meromorphic functions of several complex variables. Though
it is difficult to see how the methods of this paper can be applied to
this more general case, even with the aid of Nevanlinna theory, it is
quite possible that other methods, such as for example the one used
in the proof of Theorem 2 in [4], might yield interesting analogues
•of our results in the meromorphic case.
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