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ENTIRE FUNCTIONS OF SEVERAL VARIABLES
WITH ALGEBRAIC DERIVATIVES AT
CERTAIN ALGEBRAIC POINTS!

FrRED GROSS

The purpose of this paper is to extend certain theorems
on the arithmetic properties of analytic functions due to Straus
to functions of several variables,

Numerous papers have been written on the arithmetic properties
of analytic functions (e.g., Straus [7], Buck [1], Kakeya [3], Selberg
[5]). The author is not aware of any analogous studies for analytic
functions of several variables. Since the generalization from two to
several variables involves no new difficulties that are not already en-
countered in the generalization from one to two variables, we shall
for the sake of simplicity, restrict our discussion to functions of two
variables.

2. Preliminaries. We begin with a generalization of order and
type.

DEFINITION 1. Let f(z, 2,) be an entire function of the two vari-
ables. Let M(r,, r,) = M(r) denote the maximum value of |f]| on the

surface given by |z;| = r(2 =1, 2). (0, 0,) is said to be an order point
of f, if for any ¢ > 0, as », + r, approaches infinity

M(r)/exp (rives 4 pee)
is bounded, while

M(r)/exp (r{r + riz)
and

M(r)/exp (ror— + r{z)

are both unbounded. The set, o, of all such points (o,, p,) is called
the order of f.

DEFINITION 2. Let f(z, #,) be as above and let (0, 0,) be one of
its order points. (¢}, 0;) is said to be a type point of f at (o, 0,) if

for any ¢ > 0, as », + r, approaches infinity

! In a dissertation written by the author under the direction of Professor E. G.
Straus and submitted to U.C.L.A. in July 1962, variations of the results in this paper
were proved by a generalization of an argument used by Straus in [7]. The arguments
presented here are somewhat briefer.
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M(r)/exp (0. + &)r{* + (0, + &)77?)
is bounded, while
M(r)fexp (o.7{+ + (0, — €)152)
and
M(r)/exp (0, — e)r{* + oyri2)

are both unbounded. The set of points, o, ,, of all such points (7,, 0.) is
called the type of f at (o, 0.).

For the sake of simplicity, we add the following.

DEFINITION 3. An entire function f(z, 2, will be said to have
{(0,, 0,), (0, 0,)} as an order-type point if (o, 0.) is an order point of
f and (o, 0,) is a type point of f at (o, p.). We shall say that (o;, 0;) <
(2, y) if either o, <z or o, =z and 0; <y (1 =1, 2).

We state some lemmas whose proofs are contained in [2].
LEMMA 1. (Generalized Taylor series.) Let f(z,, ;) be entire and

let z;; 10=1,2; 7=1,2,---) be two infinite sequences of complex
numbers whose terms are bounded. Then one may write

(1) ez = 53 an, I 11— 2,

with

(2) fran = _(27:1'17)2 Slz = S\ j=r gj(rilq,lzg)dz‘dzz
B | B | N CPE

i=1 j=1

where

7; > max |z | (1=1,2;7=1,2,.--).
J

Proof. Same as Lemma 2.1 in [2].

When z;; is a finite set of integers, «; (j = 0,1, --+;k — 1) and
Z,; is a finite set of integers, 8, ( =0,1, --+;k, — 1) then (1) may
be written as

o k1=l o kg1

f(zly zz) = Z Z Z Z a’(Skl-i-l)(tszrh)(aq _ aO)S—,‘-l -

1 5=0 1=0 t=0 h=0
( a) (21 - az_1)3+1(zl — al)s cee (zl _ akl—d)s(zz - ,BO)HJ ..

(zz - Bkz—x)t .
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By means of the residue theorem and (2), one obtains
LeEmMmA 2. If
oMt f(z;, 2,) /077102
1s wntegral for (2, 2,) = (a;, B)(t=0,1,-++k —1;7=0,1,:-+,k, — 1)
and for all mommegative integers m, and mn, then the coefficients

Qs eny oy ON the Tight side of (la) are rational numbers whose de-
nominators divide the least common multiple of the quantities

=o)L (@ —ape (@ = a) it - )
08— B) 11 (B — BY™,

=203 15N Ge=h415 iR

m:O,l,---,kl—l; 1’1/:0,1,"',]02-*1; {x0+x1+ e +xk1—1:xv
Yo+ ¥+ o + Yy =yh2=0,1,---,sand y =0,1, -+ £

Proof. See proof of Theorem 3.6 pages 134 and 135 in [2].
An argument almost identical to this gives the following.

LEMMA 2A. If the o's, B's and partial derivatives im Lemma 2
are algebraic integers, then each of the coefficients is a ratio of two
algebraic integers whose denominator is the least common multiple
of the expressions (3).

LemMA 3. Let f and a,,, be as in Lemma 1 and suppose that
{(0,, 0, (0o 05} ts an order-type point of f. Then the inequality

M(r) < exp (r{res 4+ pgete)

holds for ¢ > 0 and all sufficiently large (depending on €) r, + r, if,
and only if, the inequality

9
(4) | Ay | < II mymilteite
i i=1

holds for ¢ >0 and all sufficiently large (depending on &) n, + N,.
Furthermore, the inequality

M(r) < exp (0, + &)r! + (0, + €)r5?)

holds for ¢ <0 and all sufficiently large (depending on €) r, + », if,
and only tf, the inequality

(5) [ @y | < f{=1 ((e0:0; + €)/m;)"il?s

holds for ¢ > 0 and all sufficiently large (depending on &) r, + 7,

Proof. The proof of this lemma is entirely analogous to the one
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variable case (see e.g. [6]).

3. Main result. We first consider the case where assumptions
are made about the value of the function and its partial derivatives
at a single point.

THEOREM 1. Let f(z, 2, be an entire function such that

0"*"2f(0, 0)/02110%32 = @y 4, ,

where @, ,, 18 an algebraic number of degree < d for m,, n, = 0,1, ---.
Let q,,., be a positive rational integer such that q, &, ., is an alge-
braic integer. Assume that for some positive numbers A, B, s; and
t; (t =1, 2) and any positive ¢

‘a”ﬂtzl = 0((A + eymtmepfimpg":
and

(6) Qo = O((B + )y r+menimpiers) |

Let
O = ((s; + t)(d — 1) + ¢, + 1)~
G = (ep)H(ASBm) (i =1,2).

If for some order-type point, {(0., 7.), (0 0.)}, of f, there holds
((0117 ai) < ((oioy aio) (?' - 1; 2) )

then f is a polynomial.

Proof. We may write
S(Ziy 22) = 30 @,,0,201252
where

Qyny = Oy /M1 70,)

nyng
Furthermore, it follows from the hypotheses of the theorem that
(7) (o | = O(AB + ewmmfrtimprse)

Assume that f is not a polynomial. Since g, ., ., is an algebraic
integer, it follows that for an infinite sequence of pairs (n,, n,)

(8) | Norm q,,,, @0, | = 1.
Consequently, for these n, and n,

( 9 ) I q'lblnzanl’lbz ] g I Norm qnlnza’lblng I ‘ q"lll’ﬂza’llrl’nz Tl M
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Thus, from (6), (7) and (9) we obtain

INorm q”l”zanl'nzl < Iamnzl [O<I21 ((AB + 8)(d~1)ni
(10) n,1n,! ici
X (B + s)nie—ning(sﬁti)(d—1)+ti+1]n,i)>] .

On the other hand, it follows from (4) of Lemma 3 that

(11) lanm' < la l < fI nt-ni/(ﬂHe) .
7, 1,! Mt m

If for © = 1,2, p; < p;, then for some positive ¢ satisfying o, + ¢ <
0 — € and some positive &,
(12) ,n;—'nil(pﬁs) < ni—ni[(SiHi)(d—1)+ti+1]—fo”i (’L — 1’ 2) .
From (10), (11) and (12), one easily concludes that for sufficiently large
N, + Ny
13) | Norm q,,,0,0, ., | < 1.
Thus, in this case, we get a contradiction between (8) and (13).

If o, =0, and a; < a;, for either 4 =1 or 7 = 2 or both, then
one can similarly use (5) of Lemma 3 (instead of (4)) together with

(10) to again arrive at the contradiction between (8) and (13). This
completes the proof of the theorem.

We now proceed to the case where something is known about the
value of the function and its partial derivatives at several points.

THEOREM 2. Let f(z, z,) be entire and suppose that for all non-
negative integers m, and n,
omtref(z,, 2,)/021075

1s integral for (2,2) = (a4, b;)(t =1,2, «++, k,5=1,2,--+, k) with
a; # a;, b, = b; for v+~ j, where a; and b; are integers. If f has an
order type point satisfying

(01, 0) < (ki | V(ay)™|)
(fozr 02) < (kzy ’ V(bz)_zj) ’

where V(a;) and V(b;) are the Vandermondes of the ajs and bjis re-
spectively, then f is a polynomial.

Proof. By Lemma 1, we may write

J(2, 2) = X, anlnz(zl — )@ —ap) e (R — an,)(zz ~b) e (2— bn2) .
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where a, , =a, and b,,., =0, (n =1,2,...). Using Lemma 2 with
s = [n,/k)] and ¢ = [n./k,] ([r] = greatest integer less than »), one easily
concludes by looking at the expressions (3) that «,,, is a rational
number expressible as ¢, . /d, .., ¢, ., integers and

oy = (B[R]0 Vi@ ™0 V(b

If 0, <k; (1 =1,2), then using (4) of Lemma 3, we obtain
(14) 1‘0%1”11 = [anlnzi Idmng[ < ﬁ (n,,f'””ki[ni/ki]! | V. (zl»m'/ki]) ,

where V, and V, are V(a;) and V(b,) respectively.

For sufficiently large =, + m,, the right side of (14) is less than
1. Thus, ¢,,,, and consequently «, ,, must be zero, so that in this
case, f must be a polynomial. If o, =k, and o; < V;* for one of the
values ¢, then by virtue of (5) Lemma 8

| Cnlnz < ((ekz ‘ Vz 1_2 -+ 5)/7’1,,;)"”5”‘"5
[n/k;]! VAnilkd) | (second factor)| .

(15)

It is easy to see that the first factor on the right side of (15) is less
than 1 for sufficiently large n;. The second factor is either of the
same form as the first or has the form of the right factors appearing
in (14). Thus, in any case the right side of (15) is less than 1 for
sufficiently large n, + 7, and the theorem follows.

Instead of considering functions with integral values and partial
derivatives at the integers one can consider more generally functions
whose values and derivatives evaluated at a certain set, F, of alge-
braic numbers are themselves numbers in F.

THEOREM 3. Let f(z, z,) be an entire function such that

0"t f(zy, 2,)
0zMozre

has the values «, ,; at the points (2, 2,) = (&, B;); 1 =0, «++, k, — 1,
=0, k=1, 0=, =0; a; # ;, B; # B, when 1, # 1,. Assume
that @, ,.; &; and B; belong to an algebraic number field K of degree
dform =01,+-+;n,=0,1,---;7=0,1, -« k, —1landj=0,1, ---,
k, — 1. Let

(16) M, = 2max[a| ,

(17) M, = 2max | B;|

J
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and let ¢ be a positive rational integer such that cay”, ¢BY are alge-
braic integers for 1 =1, -<;k,— 1 and =1, --+, k, — 1, where a}”,
LY =1,--+,d) are the conjugates of a; and B; respectively. Let
Qnyny De a positive rational integer such that q, ., .,q; is an algebraic
integer and assume that for some positive reals A, s, S, B, t,, t,

(18) [ @i | = O((A + ©)"#memimingens)
and

(19) Ty = O((B + &)™+memiiniers)
for

1= Oy 1y ""kl_ 1;.7 :Oy 1; "'7]02"“1;%1 = Oy 17 e
and n,=0,1, .-+, Let N, = 2k;(k; — 1),
Oi0 = k[(dt; + (d — D)s)k; + d]™*

and
Gia = (00 (ko) 7=tk
(A(d—l)Bd I V.z IZ/ki Cdzi/ki)”‘/’io

for 1 =1, 2,
If f has an order-type point satisfying

(0is 03) < (Oios Oi0) =12,

then f is a polynomial.

Proof. Let fl(z,2,) be given by (1). If «,,,;, «; and B; were
algebraic integers, then applying Lemma 2A one would be able to ex-
press the coefficients of the series as a ratio of two algebraic integers
Coyny/@nyn, and one would get an upper bound for |¢,,,| as in the proof
of the previous theorem. From the hypotheses of the theorem one
can also get an upper bound for |c, .| and subsequently arrive at the
conclusion that |Norme,,,| < 1 for sufficiently large n, + n,. Though
in our case @, ., &; B; are not algebraic integers, multiplication by
the appropriate rational integers effectively reduces it to the simpler
case just mentioned.

For the sake of convenience let us also express f in the equivalent
form (1la) with s = [n,/k,] and t = [n,/k,]. From the second equation
on page 135 of [2] one can easily verify that one may write

Cy )
K — (2 ky1+2 k
- innzanlnzc almy/ley 1+ 29l na/leg])

(20) d'”1"2

p— (118+29t)
= Qb+ 0tk C T Qg ) (kg 1)
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with
21) (| < I | Vi e ]

and ¢, ,, an algebraic integer of the form
(22) S Ly,

where I, is a positive rational integer satisfying for all [

- n; 1 g 0yl k 1+ 2l ngl kgl £y tn

2 2

the v, are products of at most \,/2 terms of the form (a; — «;)* and
at most \,/2 terms of the form (8; — B;)*i with

s<a[ < o 2],
Uiy < . Vi < 7,

and the 7, are one of the numbers «,, ,.; with m; < [n;/k;] (i =1, 2).
Using (16), (17) and (18) one can easily show that for each sum-
mand in (22)

— 2 e [T .
(23) [ Ly | < El ([%:_] [_}"s_]y M Al ki) ghitnilkd

O((A + &)"nfi")O((B + &)"iniis)) .
The number of summands in (22) does not exceed [[:.. k:[n:/k;] and

hence (23) implies

o < T m; | zi[ni/m[ M ] 2lnglk;)

O((A + &)"ni™)O((B + &)"inti")) .
Using (4), (19), (20), (21) and (24) we obtain for any & > 0.
| Norm c’nl%g l é | C’/Li'nz | l C”n]nz |(d_1)

< ﬁ <| Vi lz[”i/ki][ N; ]! ni—ni/(p,;+5)0((B + 8)”’)@5”"50“[””“”)
! k

A

(25) ) <[ Zl ]ki+3[ Zl ]! MAE(O((A + ) imini)

% O((B + e)”fn;w»‘d"”) '

If 0;,<p:, then a simple calculation shows that the right side of (25)
is less than 1 for sufficiently large %, + 7, and the desired conclusion
follows in this case. Using (5), (19), (20), (21) and (24) one obtains
similarly
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2

INorm Cnlnz] < H (I V; !2W,ki][%]! (ep;(o; + 5)/ni)nilﬂi

=1 7

(26) O((B + 8)”%‘%21’%@')01”["1‘Uvﬁ([%]kﬁs[%]!M/‘i["i/ki]

O(A + &mis")O(B + gini)) ) .

If 0; < 0t =1,2and o, = 0, 0; < 0, for at least one of the 7, then
again a simple calculation shows that the right side of (26) is less
than 1 for =, + m, sufficiently large and the theorem follows.

The question of generalizing the results of one variable to funec-
tions which are not entire, such as meromorphic functions, has already
been suggested by Straus [7]. More generally it would be interesting
to consider meromorphic funections of several complex variables. Though
it is difficult to see how the methods of this paper can be applied to
this more general case, even with the aid of Nevanlinna theory, it is
quite possible that other methods, such as for example the one used
in the proof of Theorem 2 in [4], might yield interesting analogues
of our results in the meromorphic case.
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