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Let a be an infinite retraceable set having the property
that if an is the retraceable function ranging over α, then
for each partial recursive function p(x), there is a number m
such that p(an) < an+i whenever n^m and p(an) is defined.
Recently, T. G. McLaughlin proved the existence of retraceable
sets having this property and also of such sets having recursively
enumerable complements. In addition, he showed that sets of
this kind will be immune and that each of their regressive
subsets will be retraceable. The main result of this paper
states that (infinite) regressive isols that contain a retraceable
set with this property will be universal. As corollary to this
result we obtain the existence of cosimple universal regressive
isols.

We will assume that the reader is familiar with the terminology
and main results of the papers listed in the references. We let E
denote the collection of all nonnegative integers, Λ the collection of all
isols, and ΛB the collection of all regressive isols. If /: E —> E is a re-
cursive and combinatorial function, then we let Cf denote its canonical
extension to Λ. If a S E, then we say that a is cofinίte if the com-
plement of a is a finite set, i.e., if there is a number m such that
n^ m=>nea. If / is a partial function (from a subset of E into E)
then we denote the domain and range of / by δf and pf, respectively.
If / is a partial function and x and y any numbers, then we write
"f(x) < y" to mean either that f(x) is undefined or else f(x) is defined
and f(x)<y; we interpret af(x) fg y" in a similar manner. We recall
from [7] that an infinite isol A is universal if for each pair of recursive
combinatorial functions / and g, one has

Cf(A) - Cg(A) — {n I f(n) = g(n)} is cofinite .

2* Γ-regressive isols* We call a retraceable function an T-retrace-
dble if it has the property that for each partial recursive function p(x),
there is a number m such that

n ^ m = * p(an) < an+1 .

We call an infinite retraceable set T-retraceable if it is the range of
a Γ-retraceable function. A useful result of T. G. McLaughlin, [8], is

(1) cosimple Γ-retraceable sets exist. McLaughlin also observed
that
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(2) T-retraceable sets are immune.
We call an infinite regressive isol T-regressive if it contains a T-retrace-
able set. By (1) and (2) it follows that both T-regressive isols and
cosimple T-regressive isols exist. We let ΛTR denote the collection of
all T-regressive isols. Let a be a T-retraceable set and δ any finite
set. Then it can be easily shown that the set a (J δ is also T-retrace-
able. It follows from this property that

( 3 ) TeΛTR and n e E = > T + n e ATR .

REMARK. We wish to give next an example of a T-retraceable set.
In a proof not yet published, T. G. McLaughlin used movable markers
to obtain the existence of a cosimple T-retraceable set. Our proof
here will be a little easier because we do not require that the T-retrace-
able set that we construct be cosimple.

Let {Pi(x)} be an enumeration of all partial recursive functions of
one variable such that each partial recursive function appears exactly
once in the enumeration. Let the function un be defined by

= Σ

where we set p{{x) = 0 if p^x) is undefined. By [3, Lemma 2], there
is a retraceable function t* such that

tl > un , for each neE .

Let tn = 2t*. Then tn is also a retraceable function, and ranges over
a set of even numbers. In addition, for each partial recursive function
pe(x) (e denoting the index in the enumeration), we see that

(4) n ^ e = > pe(n) ^ un < tn .

Let the function an be defined by

\
(αw = tn+1(2n + 1) , for n ^ 1 .

Because the retraceable function tn assumes only even values, it is
readily seen that an is a retraceable function. Also, for each partial
recursive function pβ(x),

n^e = > tn+1(2n + 1) ^ e ,

and therefore by (4) we have, for n ^ e

pe(an) - pe(tn+1(2n + 1))

< tn+2(2n + 1)

< tn+\2n + 3) - αn+1 .
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Hence an is a T-retraceable function, and its range will be a Γ-retrace-
able set.

3* The main result* The main result that we wish to prove is
that T-regressive isols are universal. For this purpose we will need
two lemmas, each of which involves a relation T ^ * un between in-
finite regressive isols T and functions un; the relation was introduced
in [3] and we now recall how it is defined. If T is an infinite regres-
sive isol and un any function from E into E9 then T <L* un if there
is a regressive function tn that ranges over a set in T such that
*n ^ * un\ here tn ^ * un means that the mapping tn -+un has a partial
recursive extension. It can be shown that if T ^ * un, then tn ^ * un

for every regressive function tn that ranges over a set in T [3]. Also
if T is any infinite regressive isol and un any recursive function, then
T ^ * un. The first lemma we will state without proof because it can
be readily obtained from results in [3].

LEMMA 1. Let T be an infinite regressive isol and let un be any
function such that T ^ * un. Let un ^ 1, for each number neE. Then
Σ Γ un e AR and if tn is any regressive function that ranges over a
set in T, then

j(t0, 0), , j(t0, u0 - 1), j(tl9 0), , j(t19 u, - 1), ,

represents a regressive enumeration of a set belonging to 2 Γ un.

LEMMA 2. Let T be a T-regressive isol and let un and un be any
functions such that both T^*un and T<**un. Let unl>l and un^l,
for each number neE. Let

( 5 ) ΣT u*, = Σ r nn .

Then the set {n\un = un) is cofinite.

Proof. Let tn be a Γ-retraceable function that ranges over a set
in T, and let τ = ρtn. By Lemma 1,

3(to, 0), , j(tQ, uQ - 1), j(t19 0), , i(^, u, - 1), ,

3(to, 0), , j(t0, uQ - 1), j(tι, 0), , j(tl9 uγ - 1), ,

represent regressive enumerations of sets belonging to ΣT un and Σ Γ un

respectively. Let the regressive functions determined by these two
enumerations be given by gn and gn respectively. In light of (5) we
see that gn and gn will be regressive functions that range over sets in
the same isol, and therefore by results in [5] it follows that g%~gn9

i.e., there is a one-to-one partial recursive function p(x) such that
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( 6 ) pg c δp and (vn)[p(gn) = gn\ .

In addition, because T <** un and T ^ * un there will also be partial
recursive functions /i and f2 such that

r c S Λ and

r c δ / 2 and

Define the four functions,

2>i(») = kpj(x, 0) ,

2>2(a) = kpj(x, fx(x) - 1) ,

ffi(α) = kp-'jix, 0) ,

g2(a) = kp-'jix, f2(x) - 1) ,

where & denotes the familiar recursive function having the property
that kj(x, y) — x. Then each of these functions is partial recursive
and will map τ into τ in the following way:

if pj(tn, 0) = j(tk, y) then p,{tn) = tk ,

if pj(tn, un - 1) = j(tk, y) then p2(tn) = ίA ,

if P'W*, 0) = i (^ , V) then gx(^) = ί, , and

if p-ιj(tn1 un - 1) = j(ίfc, 2/) then q2(tn) = tk .

For each number ne E, let

pλ(tn) = tn, , p2(ίw) = tn,, ,

Because £n is a Γ-retraceable function and px(x) is a partial recursive
function, there will exist a number mj such that

n ^ mx = > p£tn) < tn+1 .

Combining this with the property that tn is a retraceable function and
hence strictly increasing, we see that

n ^ m, => p£bn) < tn+1

= * tn, < tn+1

= > nr ^ ?^ .

Therefore,

(A) n^ m1 = » n' ^ w .

In a similar fashion it can be shown that there are numbers m2, kγ and
k2 such that
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(B) n^m2 => n" <Ln ,

(C) n ̂  kt ==> n* <Ln ,

(D) n^k2=*n**^n.

Let

m = max {m19 m2, klf k2} ,

and let m be a number chosen such that

(ΎVl Γ> /W) 5>TiHlit ;^_ #A& dllLL

( 7 ) ~

l(Vn)[n ^ m ==> n' ̂  m and π* ^ jm] .

To complete the proof, we now verify that

( 8 ) n ̂  m ==> ttw = ί£w .

In view of the definition of the functions gn and gn and the relation
(6), we see that to verify (8), it suffices to prove
(* ) n ̂  m = > pj(tn, 0) = j(tn, 0)

and this will be our approach here. To prove the relation (*), assume
that n^ m and let

( 9 ) pj(tn, 0) - j(tr, x) .

Then we wish to verify
(a) r — n and
(b) x = 0.
For (a). We first note that r — ri and therefore by (7) and (A),

we have

(10) r ^ n .

If x — 0, then r* = n. In this event we have by (7) and n ̂  m that
n' = r ^ &! so by (C) it follows that r* ̂  r, and hence also that w ^ r.
Combining this with (10), we see that if x — 0 then r — n, and we
are done.

Assume now that x > 0; then 0 < # ^ ur — 1. Consider the
diagram,

j(tn,θ) j(t8,y)

Ί
j(ί r, a;) j(ί r, S r - 1) .

We note first that n ̂  s and s = r**. Also from (7) and n ̂  m we
have w' = r ^ fe2. By (D) it follows then that s = r** <^ r. Hence
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n ^ r; and combining this relation with (10) implies r = n. This com-
pletes the proof of part (a).

For (b). By part (a), we know that

(11) P3(tn, 0) - j(tn, x) ,

where 0 ^ x ^ un — 1. We wish to show here that x = 0. It can be
proven by an argument similar to that in part (a), that one will also
have

(12) p-ιj(tn, 0) = j(tn, y) ,

for some y, 0 ^y ^ un — 1; and we will omit the details. We will
therefore have the following diagram,

3(t»> V) 3(tn> 0)
t I

P"Ί \P

and this array will only be possible if x — y = 0. This verifies part
(b) and completes the proof.

COROLLARY 1. Let T be a T-regressive isol and let un and un

be any functions such that both T ̂ * un and T ίg* un. Then

Σiun = Σ #n = = > {n\un = un) is cofinite .

Proof. Let the symbol 1 denote the recursive function identically
equal to 1. Then Γ ^ * l , and by [3, Lemma 3] both T £* (un + 1)
and T ^ * (un + 1). Consider the following implications:

21

— Σ («. + i) = Σ (un + i)
T T

==> {n I un + 1 = un + 1} is cofinite

===> {̂  I uΛ = un) is cofinite .

The first implication is clear, the second follows from results in [3],
the third from Lemma 2 and the last one is clear. Together they
imply the desired result and this completes the proof.

THEOREM 1. Let T be a T-regressive isol. Then T is universal.

Proof. Let / and g be any recursive combinatorial functions. We
wish to show that
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(13) Cf(T) = Cg(T) =— {x I f(x) = g(x)} is cofinite .

Let the functions en and en be defined by

e0 = /(0) ,

e» = f(n) - f(n - 1) , f or n ^ 1 ,

SΌ = 9(0) ,

(14)

(15)
ίor n^

Clearly en and ĝ  are recursive functions, since combinatorial functions
are also increasing. In addition to this, en and en will be the e-difference
functions associated with the functions / and g respectively, [see 1].
Hence by [1, Corollary 2] we see that

= Σ en f a n ( l
T + l

c.(T) - Σ e .
2' + l

To verify (13) assume that Cf(T) = Cg(T). Then

(16) Σ^ = Σ^
T + ί T + L

Because T is a T-regressive isol, it follows from (3) that T + 1 will
also be a T-regressive isol. Also both T + 1 <;* en and Γ + 1 ^ * ew,
since en and g*n are each recursive functions. In light of Corollary 1,
it follows from (16) that there is a number meE, such that

(17) n ^ m = > en = en .

If m — 0, then it is easy to see from (14) and (15) that f(n) = g(w)
for each number n e E; and the desired result follows. Let us assume
now that m ^ 1. Let

Then, from (16)

eQ +

and hence also

(18)

we

. . .

e0 •

I

have

•f . . . + <

τ= Σ
(Γ+i-m)

CΓ+i—m)

- t / = β 0 - m_, + U

In view of (14) and (15), it follows from (18) that f(m - 1) = g(m - 1).
Finally, combining this fact with (14), (15) and (17) we see that

n ^ m — 1 = > f(n) =
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Therefore the set {n \ f(n) = g(n)} is cofinite, and this completes the
proof of the theorem.

THEOREM 2. There exist cosimple universal regressive isols.

Proof. Use Theorem 1 and the fact that cosimple T-regressive
isols exist.

4* Concluding remarks* (A) The existence of universal regres-
sive isols was first proved by E. Ellentuck in some notes not yet
published. Also, in some unpublished notes, J. Barback showed that
multiple-free regressive isols exist and that these are also universal.

(B) We have also proved the following result, stated here with-
out proof, of which Theorem 1 is a corollary:

Let T be a T-regressive isol, and let / and g be any recursive
combinatorial functions. Then

Cf(T) ^ Cg(T) = - {x I f(x) £ g(x)} is cofinite .

(C) We wish to state without proofs some additional properties
of the collection ΛTR of all Γ-regressive isols. We will assume that
the reader is familiar with the three relations < ,̂ ^ and * defined be-
tween infinite regressive isols; the first two are defined in [6], and the
third in [2].

THEOREM A. Let AeΛR — E and TeΛTR. Then
(a) T is multiple-free,
(b) A ^ T = > A e ΛTR,
(c) A ^ T => A 6 ΛTR.

THEOREM B. Let A, B, TeΛTR. Then
(a) A*B = > min (A, B) e ATR,
(b) A + BeΛR = > min (A, B) e ΛTR,
(c) A, B <,T => min (A, B) e ΛTR.

The author wishes to thank Professor Joseph Barback for his help
during a seminar which he conducted at Arizona State University.
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