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A UNIQUENESS THEOREM FOR SECOND ORDER
QUASILINEAR HYPERBOLIC EQUATIONS

A. E. HurD

A uniqueness theorem is proved for weak solutions of
quasilinear second-order hyperbolic equations of the form

U — ,,Z=1 0x; ai(x, t,u, uy -, ua) = b(w, ¢, u)

in many space variables, The weak solutions are assumed to
satisfy a time-wise upper Lipschitz bound

U@, 8) — @, b)) _ g
P—, = K@)

for all 0 < t < t,,t; where K(t) is an L'-function, Together
with the obvious assumptions, the equation is supposed to
satisfy a symmetry condition

o0 _ 90
Guj Ou;
along with convexity of the a‘ in w and u,. As a corollary,

a uniqueness theorem for systems proved by Oleinik is gen-
eralized,

In recent years a number of authors have studied quasilinear
hyperbolic equations and systems with the goal of obtaining general
existence and uniqueness theorems for the initial problem. Regular
or smooth solutions do not usually exist for these problems, and so
one tries to establish the existence of weak or generalized solutions
of various types. The uniqueness question for such solutions is then
somewhat more tenuous than that for smooth solutions, and usually
involves the assumption of some sort of one-sided Lipschitz estimate
on the solution.

The first comprehensive attack on these problems began with
Oleinik’s paper [6] in which she established existence and uniqueness
results for generalized solutions of first order equations of the form

(1) _<3_%f_+ai(x’t,u)+¢(x,t,u)=0.
ot o

The function @ was subject to a convexity assumption

(2) PP >,
out

To prove uniqueness she used a variant of the method of Holmgren

415
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(see [3]), assuming that the generalized solutions % were bounded
measurable, and satisfied a Lipschitz bound of the form

(3) Uy, 8) — U(%sy ) < K@, t) .
X — X

Since Oleinik’s paper much effort has been directed to generalizing
her results in two directions;

(a) to systems of first order equations (see e.g. [4]), and

(b) to equations in many space variables ([1], [2]).

However, little progress has been made on a corresponding general
theory for higher order equations, with no existence theorems having
yet been produced. ‘

This paper is devoted to proving a uniqueness theorem for weak
solutions of the initial value problem for second order symmetric
(Assumption II) quasilinear hyperbolic equations in several space vari-
ables. A variant of the Holmgren method is again used, except that
energy estimates are used in place of pointwise estimates. The same
method has been applied to symmetric first order systems in [5]. We
also require convexity-type assumptions on the equation (Assumption
IV). But in interesting contrast with the case of first order equations,
we are led to impose time-wise Lipschitz bounds on the solution (As-
sumption B) in place of the space-wise Lipschitz bounds (3).

In the last part of the paper our result is used to generalize a
uniqueness theorem for a hyperbolic system of two first order quasilinear
equations which was obtained by Oleinik [7]. The generalization
essentially amounts to weakening the convexity condition, and replacing
a constant Lipschitz bound by an L' function. It would seem that
more substantial extensions of Oleinik’s result are possible using the
technique presented here.

2. The uniqueness theorem. In the region
D= {(xt):2x=(x, -, x,)eR,; treal, 0 <t < o}
we consider the second order quasilinear hyperbolic equation

(4) utt—-zn‘,;—a"(w, £y Uy Uy + e+, ) — B(T £ ) = O
o1 0x;

for the function u(x, t), where we have used the notation

o, . and 5 Py .

The equation will be subject to the following assumptions.
I. The functions a'(x, t, u, ;) and b(x, ¢, u) are defined for all



A UNIQUENESS THEOREM FOR SECOND ORDER 417

x, t, w, u, satisfying —oo < @, u, %, < 0,0 <t < o, and are differ-
entiable with respect to these variables, the derivatives being uniformly
Lipschitz continuous on compact subsets of D. Also da‘/ou; is continu-
ously differentiable with respect to ¢, u and w,.

II. (Symmetry) If

o’ (x, T, u, up) = abi(x, t, u, Uy)
ou;

then

( 5) aij(xy tr u, uk) = a’ji(x’ t’ ’H/, uk) .

III. Given positive constants M and 7T there are corresponding
constants ¢, > 0 and ¢, > 0 such that
2 &8 = 3 at(m, t, u, uy)éiE;
( 6 ) 2=1 2, =1

n
¢, >, &
=1

%

for all vectors (¢, --+, §&,) if (z,t)e R, x [0, T] and
lul+ 3wy | < M.

IV. (Convexity). For all vectors (£, ---, &,) we have

(Ta) S 99 ot wy w) s < O
=t 0U
and
(7b) 30 Gt w0 (k=1 e, m).
7= 0U,

V. The functions

Rl
ot

(37, t) u’y uk)’ aal
o

(x: t’ U, uk) and ib‘(xy t’ ’lb)
ou

are uniformly bounded on compact subsets of (x, ¢, w, u,) space.
We will be concerned with weak solutions of (4).

DEFINITION. Let f(x) and g(x) be essentially bounded measurable
functions on R,. A weak solution wu(x,t) of (4) on D with initial
conditions

(@, 0) = f(z) and %7:_@, 0) = g(x)
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is an essentially bounded measurable function possessing essentially
bounded measurable weak (i.e., distribution) derivatives u, and u, a.e.
on D which satisfy the following conditions:

A. For every twice continuously differentiable test function ¢(x, t)
on D which vanishes for large |z| +t, (|| = (22 + -+ + 22)'*) we
have

XS [u Pu T an‘ a'(@, t, u, w)p; — b, ¢, %)@]dxdt
8 > =
(8) + SRnf @)z, 0)da — Sn,,g(x)¢(x’ 0)dz = 0 .

B. Given any compact subset R of R,, and T,0 < T < < there
is a function K(¢) € L'(0, T') such that

(92) U (2, t;f) : ?k(-’”: ) < K@) k=1,-,n)

holds a.e. for all xeR, and 0 < ¢, <, St < T

Any twice continuously differentiable (smooth) solution of (4) is a
weak solution as is easily seen by applying the divergence theorem.

Before presenting the main result of the paper we establish a
lemma concerning energy inequalities for twice continuously differ-
entiable solutions of hyperbolic equations of the form

Ly = ¢, — i‘,_ (@ (x, t)p;);
(10) e
+ 2 &, o — B, thp = Fla, 1) .

The energy of the solution ¢(z, t) at time ¢ is defined to be

(1) Bt) = S[q)(x )+ 3 i 0 Jde

We will assume that our solution has uniformly bounded special support
on any given finite time interval, in the sense that, given T =0
there is a rectangle RcC R, such that the support of o(z,?) as a
funection of « lies in R for all ¢,0 <¢< T. A uniform bound on E(t)
for all such ¢ will be obtained under the following assumptions:

I'. The functions a'/(zx,t), a‘(x,t) and B(x,t) are continuously
differentiable functions of = and ¢.

1 Since u has essentially bounded weak derivatives it follows (c.f. Serrin [9]) that

w(x, t) — u(x, to)

(©b) t1— L2

=K

holds a.e. in R X [0, T'], where K is some constant.



A UNIQUENESS THEOREM FOR SECOND ORDER 419

II' For all 4,5 =1, .-+, » we have a'(z, t) = a’i(x, t).
III’. There are constants ¢, > 0 and ¢, > 0 such that

(12) a8z 3 @i ez 03 &

for all (x,t)e R x [0, T] and all vectors (&, ---, &,).
IV’. There is a function K,(¢) € L'(0, T') such that

(13) )y

1,7=1

for all (x,t)e R x [0, T'] and all vectors (&, ---, &,).
V’. There are constants 4 = 0 and B = 0 such that

ai(®, 08¢, < Kit) .6

(14) i@, )| <A, [B@H|=B

for all (x,t)e R x [0, T].
VI'. The function F(x,t) is square integrable on R X [0, T].
Then we have

LEMMA. Under assumptions I' through VI’ there is a constant C
such that

Ex)<C

forall 7,0 < T

Proof. We have

(15) \

-2 “241 (@) ; — Q(w, t)
where
(16) Qx, t) = i§1 aipp; — 2 Z_‘{ a'pp, + 2Bpp, .

Integrating (15) over B X [0, 7], 0 < 7 < T, using the divergence theorem,
and the fact that ¢ vanishes on the boundary of R forall ¢,0 <t <7,
we obtain

[ [ot+ 3 avpip,[an =] @, avar
R 1,5=1 0 oJE
+ 251 o F(x, t)ydedt .
0JR

Denoting all constants generically by C, there results
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B < C[E(O) + H Qw, t)dadt + 2” o F(z, t)dxdt] :
0JR 0JR
Now to bound the right-hand side we note that from (13)

SHZ g |dndt < | KBt

0 i,5=1

and from (14)

- SS o aigoiqat}dxdt < CSTE(t)dt :
0JR i=1 0
Also from (14),

H 2 B dudt < cgg [¢* + gildudt
0JR 0JR

< CS S ordadt + CS’E(t)dt ,
Ry 0

0

so that
H Qx, t)dwdt
0JR
< St[K(t) + ClE®)dt + CH prdrdt .
0 0JR,
To estimate the last integral on the right we have
Pz, t) = Stgvs(x, s)ds + p(x, 0) , zeR, .
0
By Schwarz’ inequality

#a, 0 = 2{t] @i, )ds + 90, 0)f

and so
S;qf(w, tydt < S:(rz — @it + Tep*(x, 0) .
Thus
EZSRtpz(x, t)dadt < S:(rz — BB
+ TSR P*(x, 0)dx
yielding

S:SRQ(x, tydedt < S:[K(t) + o — & + ClE()dt

-+ TS Pz, 0)dx .
R"b
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Finally,
2“ o F(x, tydudt < STE’(t)dt
0JR 0
+ SS F(x, tydadt
0JR,
and so in all
B@) = £@) + |10 Bwt
where
f(z) = C[E(O) + TS o, 0)dus +H F(a, t)dxdt] ,
R 0JR,

n

and
x@® = C[K({t) + o — ¢ + 1].
From Gronwall’s inequality it follows that

BE) = £ + | 2050 exp (| 2(s)ds )at

and hence the uniform boundedness of E(z) on 0 <7 < T.
In the proof of the theorem we will actually use the following
immediate

COROLLARY. Under the assumptions of the lemma we have
T n
S S [QD? + > gv%]dxdt < constant .
0JR 7=1

The fact of crucial importance in this lemma, as far as the appli-
cation to quasilinear equations is concerned, is that the bounds on
the solution follow only from upper and not two-sided bounds on ai’.

We now come to the main result of this paper.

THEOREM. Weak solutions of (4) are umniquely determined by
their initial conditions.

Proof. If w'(x,t) and w’(x, t) are two weak solutions of (4) with
the same initial conditions we will show that if w = u' — u?, then

(17 SSDF(x, H(x, tydedt = 0

for every twice continuously differentiable function F(x, ) having
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compact support in D thus showing that w is zero a.e. in D.
For any test function ¢(x, t) we have

SS {wsvu + f. [ai(x, t, w', ui) — ai(x, t, w, u})]lp;
D =1

(18)
— [b(x, t, w!) — b(x, t, u)]ga}dxdt =0.
Now
ai(xr tr uli u}c) - a’i(xy t: uzr ui)
= a'(x, o + Ei‘. a‘(z, t)w;
where

19) ai(x, t) = Slgz.ai(x, t, Tu' + (L — o), g, + (L — 2)ud)dr
0
and

@0) @iz, ) = Sla“(oc, trut + (1 — o), Tl + (1 — Dut)de .
0

Similarly
bz, t, u') — bz, t, w') = B(x, t)w
where
(21) B, t) = Slib(x, t, tut + (1 — Dudde .
00U

Thus for any test function ¢ we have
(22) gSD{G)@z: + é atiwp; + zn: aiw¢i _ ngv}dwdt 0.
BI=1 i=1

The identity (17) will be established by constructing an appropriate
sequence of test functions o™(m = 1,2, --.), using (22), and taking
limits.

Let w,(w, t) be the Gaussian averaging kernel on R, X (—c <
t < o) with support contained in the sphere

lwf + 8 < 2
mZ

thus

SSDwm(w, tydodt = 1
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for all m. If the function +(z, t) is in L%(D) we extend it to R, x
(—o <t < ) by putting (x, t) = 0 for ¢ < 0 and then define

Vul@, 1) = P *@,

where the * indicates convolution. It is well known that the functions
¥, are smooth in R, X (—o <t < =) and converge to 4 in mean
square on compact subsets of D. If in addition the function + is
uniformly bounded on a compact subset of D then the functions
possess the same bound on that subset.

The functions aii(x, t), ai(x, t) and B,.(x,t) are now defined by
the formulas for a‘i(x, t), ete., except that i, replaces u‘ (1 =1, 2).
Using our assumptions it is easy to see that

'air{(xv t) - aij(my t) I
2 2 n .
< const[Z[u’ —ul, | + Zkz | ui — u},,mlj ,
=1 1=:1 k=1

uniformly on compact subsets of D, from which it follows that the
sequence « converges to a’/ in mean square on compact subsets of
D. Similarly, «i, and B, converge to o’ and B8 in mean square on
compact subsets of D.

The test functions @™ are now chosen to satisfy the equation

n

(23) P — 2 (@lel); + % WP} — Bup™ = F(z, 1)

1,J=1

and the conditions ¢™(x, T') = @r(x, T) = 0, where it is assumed that
the support of F(x, t) is contained in DN {0 < t < T}. Such functions
are obtained by solving the backward initial-value problem with zero
initial conditions at ¢ = T. More precisely, we find solutions ¥™(x, t) of

(24) Wi — 3 @) + B @ — B = F, 1)

on 0 <t < T, subject to the initial conditions v™(x, 0) = (x, 0) = 0,
where & (x, t) = aii(x, T — t), ete., and then put ™z, t) = ¥v™(x, T — t).
The standard existence theory [3] guarantees that we can find smooth
solutions of this initial-value problem which are then admissible test
functions.

From (22) and (24) we obtain, after some integration by parts,
the identity

[[, oFdeat = (] { 3 @i - a)o,or
(25) ? e
+ 3 (@ — a)op? + (Bn — B)wgzam}dxdt .
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Our result will be established by showing that the right-hand side of
(25) approaches zero as m — «. Now as is easily seen,

¢ zg: &= igz=:1 (Yﬁ,{(x, t)éi&j = czg{ &

for all vectors (¢, ---, &,), where ¢, and ¢, are constants independent
of m, F has compact support and the existence theorems then
show that the supports of the functions ™ are uniformly contained
in some rectangular region R x [0, T] where R is a fixed rectangle
in R,; the integration on the right-hand side of (25) need only be
extended over this region. Since the functions w and w,; are uniformly
bounded, and the functions «i/, ete., converge to a’’, etc., in mean
square on R x [0, T] we see, using Schwarz’ inequality, that it suffices
to show that ¢ and ™ are uniformly bounded in mean square over
this region. This will be achieved by applying the Corollary of Lemma
1 to obtain a similar bound for the functions 7 and ™.

To apply Lemma 1 we need to show that assumptions I' — VI’
are satisfied by the coefficients of equation (23), with bounds independent
of m. The only assumption that is not immediately evident is IV’.
To establish it we note that

0 0

— &%, t) = ——aii(x, t
o (x, t) = (, ©)

and so it suffices to demonstrate that

3 2l iz —K0 38

1,9=1 t=1

Now
n a i
szll 'ﬁam(xv 1)&:€;
= 3, [4%, 1) + B, 1) + CVa, D]EE,
where
Ail(, t)
(25a) S ' oa’? ou, ou’
= 2, t,tu, + (1 —oul,7—= + 1 — 7)=—=)dr
o Ot < 0y, ( ) 0 k>
Bii(x, t)
(25b) _ S dati .o [ ous, B auz,,,]
i (x, t, )t—at +1-17) o dt
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Cil(x, t)

_< ‘aa“[ o, 1 — 7) % ]d
>V So ou L te, T T D |7

(26¢)

and we need only show the lower boundedness of the three separate
quadratic forms. Since the A% are uniformly bounded, the associated
form is lower bounded. To show the lower boundedness of the two
other forms we use assumptions IV and B. Using the properties of
the averaging kernel it can be shown (see [6]) that the inequalities
(9) imply that

ou’ P
OUn — Bt
ot ®

and

U ()
otox,

where the function K(t) e L'(0, T). The same upper bound then holds
for the convex combinations of these derivatives which occur in (26b)
and (26c). Using IV we now see that

3L (B + C)sgs = —2K0) 36,
2,5 = =1
completing the proof.

It is clear from the proof that the uniqueness theorem will still
be valid if the inequalities in (7) are reversed and the inequalities (9)
are replaced by lower bounds

©ay w@, t) —u@dt) 5 gy
t — 1, B
(9by wl@ ) — W@ b > g
b — &, N

Our assumptions were chosen to be consistent with those Oleinik [7].
In that paper she considered the system
ou op(z, t, v) -0

27 o%
(27a) ot + 0%

ov ou
27b Y _ 9%
(27b) ot o

For this system the proved uniqueness, under the assumption op/ov < 0
and the convexity assumption 0°p/ov* > 0, of pairs of weak solutions
(u, v) (defined in the obvious way), where v satisfied a.e. a bound of
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the form

(28) v(x, t;) — Qt’(xy ts) <K

where K is a constant. If we were dealing with smooth (i.e., twice
continuously differentiable) solution pairs, then equations (27) could
be replaced by the single equation

(29) %Ztﬂ — —%a(x, t,,v,) =0

where

—a(x, t, v, v,) = Eax—ﬂx’ t, v) = —a(% + %%’-(x, t, v)v, .

Inequality (7a) is then

) 0,

(30) o’

\%

which is even weaker than the strict convexity assumed by Oleinik,
and inequality (7b) is vacuously satisfied.

But this reduction can also be made for weak solutions. Using a
result of Schauder [8] we see that the weak form of (27b) implies
the existence of a (locally) Lipschitz continuous potential function
J(x, t) which a.e. satisfies J, = v and J, = . (This function can be
normalized so that J(0,0) = 0.) It is then easy to see that J is a
weak solution of

(312) T + %gv(x, t,J) =0
with the initial conditions
J(@, 0) = S”v(x, 0)da
0

and
(31b) Ji(z, 0) = u(zx, 0) .

For (31a) the inequality (7b) is equivalent to (30) and Oleinik’s other
assumptions are sufficient for the application of our theorem. The
uniqueness theorem applied to (81) then generalizes Oleinik’s result.
I am indebted to E. D. Conway for pointing out the possibility of this
reduction.
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