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= — 2 SUBSPACES OF GRASSMANN
PRODUCT SPACES

M. J. S. Lim

The subspaces of the second order Grassmann product
space consisting of products of a fixed irreducible length k&
and zero are interesting not only for their own sake and their
usefulness when determining the structure of linear transfor-
mations on the product space into itself which preserve the
irreducible length %, but also because they are isomorphic to
subspaces of skew-symmetric matrices of fixed rank 2k, The
structure of these subspaces and the corresponding preservers
are known for k=1, when the underlying field F' is algebrai-
cally closed, This paper gives a complete characterization of
these subspaces when k=2 and F is algebraically clcsed.
When F' is not algebraically clcsed, these subspaces can be
different.

Let % be an n-dimensional vector space over an algebraically

closed field F. Let A*% denote the <g>—dimensional space spanned

by all Grassmann products z, A 2., x; € F. A vector fe A*Z is said
to have wrreducible length k if it can be written as a sum of %, and
not less than k, nonzero pure (decomposable) products in A®Z. Let
& denote the set of all vectors of irreducible length k£ in A* %/, and
fe &4 if and only if <#(f) = k. A subspace of A*Z whose nonzero
members are in &4 is called an & — k subspace.

An & — 2 subspace H is a (1, 1)-type subspace if there exist fixed
nonzero vectors x # y such that each nonzero fe H can be written
f=xAwx;, +yAys. A basis of a (1, 1)-type subspace is called a (1, 1)
basis. When dim Z¥ = 4, every &7-2 subspace has dimension one
([4], Th. 10).

It is shown here that (i) for dim % = n = 5, there always exists
an & — 2 subspace of (1, 1)-type and dimension two; (ii) the 2-dimen-
sional & — 2 subspaces are of (1, 1)-type; (iii) every & — 2 subspace
of dimension at least four is of (1, 1)-type; (iv) the & — 2 subspaces
have dimension at most (n — 3) when % = 6; and this maximum dimen-
sion 1s attained. Also the 3-dimensional <& — 2 subspaces are charact-
erized, and these are the most varied.

From [4], Theorem 5, each fe ¢4 can be uniquely associated
with a 2k-dimensional subspace [f] of Z’. The pair {f,, f:} is said to
be a P,-pair in &7, if [ fi] + [f.] has dimension m; and the set {fi,---, i}
in & is pairwise-P,, if each pair is a P,-pair, for 7 # j.

THEOREM 1. Let dimZ = n = 5. Then there always exists a
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1, 1)-type ¥ — 2 subspace of dimension two.

Proof. For mn =5,u, ---,u; independent in %, the subspace

Fuy A\ wy + s A\ tyy Uy A s + u, Ausy is a (1, 1)-type & —2 subspace

of dimension two. For n = 6, u,, +--, %, independent in %, the sub-

space {U; A Uy + Us A\ Ugy Wy A\ Us + Us A U IS @ (1, 1)-type & — 2 sub-
space of dimension two.

THEOREM 2. FEwvery 2-dimensional < — 2 subspace is a (1, 1)-
type subspace.

The theorem follows from the following Lemmas 1 to 4.

LemMMA 1. Let f, and f, be a P-pair in &, a,b be nonzero in
F. Then ZF(af, + bf,) = 3. '

Proof. Let [f]N[f] =<z)>. By Lemma 9 of [4], we can choose
a basis {x,, ---, 2} of [f.] such that f, =2, A%, + 2; A2, and a basis
{@,,%5,%5,2,} such that f, = x, A%, + ¥ A2, with [fi] + [fi] = <.’l}1,- . °,£177>.
Then z = af, + bf, = x, A(ax, + bwxy) + ax; Ax, + bx, A2, and £ (z) = 3
by Theorem 7 of [4].

LEMMA 2. Let f,, f» be a basis of a 2-dimensional & — 2 sub-
space. Then {f,, f} %8 @ P,-pair where k is either 5 or 6.

Proof. Each of [f.] and [f,] has dimension four. It is easy to
see that k cannot be 4 (Theorem 10 of [4]). By Lemma 1, we conclude
kE+1T. If k=8, Theorem 6 of [4] implies that <2 (f. + f,) = 4. Hence
k is either 5 or 6.

DEFINITION. f,, f: € &, can be expressed in (1, 1)-form if {f, f3}
have representations f; = 2 Au; + y Av, ¢ = 1,2 and <z, y> is a fixed
2-dimensional subspace of Z7.

LEMMA 3. Let {f, f2} be a Pypair and a basis for an &2 — 2
subspace. Then {f,, [z} have representations

Si= YN U+ U A\ Uy
Joe=Ys A\ Uy + U A\ Uy,

where {U;, Uy Usy Yy Ys} 18 Some basis of [fi] + [fa].

Proof. Let Z, =[filN[f.]. By Lemma 9 of [4], there are repre-
sentations
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f1 =LAV F+ VAV,

fz =T, AW, + W N\ Ws
where v, vy, v5) = {w,, w,, Wy = #,. If v, w, are dependent then
some combination of f, and f, has irreducible length < 1. Hence they
are independent. Moreover <{v,, w,> N <, v5y and v, w,) N Wy, Wy
are both nonnull, and hence, without loss of generality, both v, and
w, are in <{v,, w,». Thus v, = av, + bw, and w, = cv, + dw,. Clearly
b+#0,c+ 0. Finally

w; = Pv, + qw, + rvs, r = 0.

Setting y, = br~'e¢™(2, — avy), Y5 = ¥, — dw; + cqu,, u, = d7rev, U, = Wy,
u, = bv,, we obtain the desired representations.

COROLLARY 1. Let {f,, f} be a Prpair and {f,, f.) a 2-dimensional
¥ — 2 subspace. Then {f,, f.} can be expressed in (1, 1)-form.

LEMMA 4. Let {f, f2} be a Pypair and <f,, f,) a 2-dimenstonal
¥ — 2 subspace. Then {f,, f:} can be expressed in (1, 1)-form.

Proof. By Lemma 9 of [4], there are representations
Hi=wAu+voAw, fHi=sAw+0 AW,
where {z> C[fi] N[f] and <u, v, w), <w, v', w) are contained in
(A] + [fe] —<&p) -

If <v, w) N <V, w') = 0, some linear combination of f,, f, has irreducible
length 3. If <{v, w) = <V, w)> some linear combination of f,, f, has
irreducible length < 1. The result follows.

Lemma 2 implies the following lemma.

LEMMA 5. Let H be an & — 2 subspace. Let {f,, -+, fi} be an
independent subset of H. Then

(i) 8z=[finlfil=z2 for 1 =1 <j <k
(ii) dim 32 [fi] = dim 3E, [fi] < dim 335 [fi] + 2.

Corollary 1 implies:

LEMMA 6. Let {f, f, fs} be pairwise-P; and generate a 3-dimen-
stonal & — 2 subspace. Then {f,, [z f3} is a (1, 1) basis for {fi, fo fo)
if [fl DAl N [fa)



170 M. J. 8. LiM

1. dim % = 5. It is not difficult to see that when dim % = 5,
the basis of any .&© — 2 subspace must consist of pairwise-P, vectors.

THEOREM 3. Let dim%Z =5, H an & — 2 subspace. Let {f,
<+, f1} be independent in H. Then k < 3.

Proof. Let {u, -+, u;} be a basis of Z. Theneach f,,1 <1<k,
has the form f; = D al;us ANu;(L <t <j<5),a;€F. (*) Consider the
vector f = D%, Bifi, B:€ F not all zero. Now () <1 if k= 4 for
some {8;} not all zero since the following is true. f =3’ B8, fi=
S (%, U, A uy(1 < % < 1, = 5) where p(k,w), kow) = sgn op(k,, k), o
a permutation of {1,2}, and {k;} are arbitrary integers 1 < k; < 5.
Thus, using (*), it follows that {p(7, %,)} are linear homogeneous func-
tions of {8, ---, B:}. Then the quadratic p-relations

ﬂZ:(.) (—1)”1)(7:19 %y 1:7'—17 .7‘,,)]0(‘7'0, ct jy-—u jﬂ+1! tt .7r) =0

for all sequences (¢, +**, 1,_,), (Jo, * * +, J,) of integers taken from {1, - . ., n}
define (for n = 5, » = 2 in this case) five nontrivial equations, which
are in fact quadratic homogeneous equations in the indeterminates B,
«++, B, in F. Moreover, of these five, exactly three are independent
(see [3], pp. 289, 312). Hence, if £ = 4, then there exists a nontrivial
solution for the five equations (see [6], chapter 11). For these values
of B, -+, B (not all zero), £ (f) =< 1. Hence k < 4. The following
three vectors generate an & — 2 subspace of dimension three:

fi= U AUy + Ug AUy
fo= Us AUy + Us AUy
So= (s + Ug) ANUs + Uy AUy

The following theorem is true for all n.

THEOREM 4. Let dim % =n. Let {f, ---, fx} be a (1,1) basis
for an & — 2 subspace. Then k < n — 3.

Moreover, when n =5, there always exists a (1, 1)-type & — 2
subspace of dimension (n — 3).

Proof. Suppose k = n — 2. Each f; can be written f; = u, Ay, +
Uy N2, L ST < — 2, where {Uy, Uy, Yy ** s Yn—2s By ** * 1 Buo) & %« Now
{Uyy Ugy Y1y + + +, Yu_o) must be independent for, if not, some linear combi-
nation of {f;} has irreducible length < 1. Hence Z" =<u;, Us, Y1y * * * s Yo+
Thus z; = DVt ay; + B, 1 <j<n—2. If B; #0, write

fo = A s = B+ A (S @) -
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Hence, without loss of generality, we can assume {z;} is dependent on
{y:}. Using a similar argument, {y;} is dependent on {z;}. Hence
Yy + o0y Ynsy = &y, *++, %_pp. Hence, for some {a;} e F, not all zero,
we have D7 tay;, =N D-taz; =y for some 0= 1€ F; and f= >, f;
has irreducible length < 1. Hence £t < n — 3.

Now let f; = u, AUy + Uy AUyys for 2 =1, -+, (n — 3), where
{Uy »y U,y = 7. Then {f;} generate an & — 2 subspace of dimen-
sion (n — 3).

COROLLARY 2. Let dim%Z =5, H an & — 2 subspace of (1, 1)-
type. Then, if dim H > 1, dim H = 2,

We pause here to introduce some notation.

DEFINITION 1. For subsets S, T' of %/, [S; T] =<SU T) —<T>.
In the case where S = {z, ---,2,} and T = {x,,,, +--, 2}, We use the
convention [S; T'] =[xy, =+, ®; Tyyyy ++ -, %,]. Note that in this case if
ye[S; T], then y = >k, o, ;e F, and at least one of «ay, ---, a, is
nonzero.

DEFINITION 2. For subsets S, T of ', SAT ={x Ay:2€ S and
ye T}. In the case where S is the singleton {#}, we shall write SAT
as ® AT. Similarly for T. Also, if S is the space {z,, -+, 2>, then
we shall regard S as a set and write SAT as [x, «--, 2, ] AT. Simi-
larly for T.

The three-dimensional & — 2 subspace when dim % = 5. In this
context, a basis {f,, fo fi} of an & — 2 subspace H is necessarily
pairwise P;. It is not a (1, 1) basis. However, either there exists a
three-dimensional subspace %/, of % contained in each [f;], or there
exists a exists a five-dimensional subspace 2%~ & % which contains
each [f;] (see [1], p. 14). In fact, 77~ = %. Moreover, since dim Z = 5,
dim[f,] N [f] = 38, and dim [f;] = 4, then dim Ni.[f:] = 2. Consequ-
ently this intersection has dimension two or three.

THEOREM 5. Let dim % = 5. Let {f, f, fs} be a basis for an
¥ — 2 subspace H such that [fi]lD %1 =1,2,3, where %/, is a
three-dimensional subspace of ZZ. Then Z has a basts {U,, Uy, Us, T,y T}
such that there are representations
f1 =T AU A+ Uy N\ Us
Jo =@ AUy + Uy A Uy,
Js=YNus + u Ny,

where Y € [Ty Ty Uy, Us] N [255 @y sy U
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Proof. 7 has a basis {w,, w,, ws, y,, s} such that 7, = {w,, w,, wy)
and there are representations f; =y, Aw, + W, A\ Wy, fo = Ys/\ Wy + W; A\ W,
(see Lemma 3). Now there exists %' e[f:] such that ¥ ¢ %, and
Y € [Ys Ys; Wy, Wy, w;].  Since {f, 13, f3} 18 pairwise-P;, it is easy to see
Yy € [ys; s, Wy, Wy, W] N [Uss Yuy Wy, Wy, ws]. Hence f; has a representation

L=y ANu+vAw Z =<u, v, wy,

(see [4], Lemma 9). Now if ue<w,, w,y, it is possible to find repre-
sentations of f,, f3, f; such that they form a (1, 1) basis for H. This
contradicts Corollary 2. Hence u ¢ <{w,, w,), but we[wg; w, w,]. In
fact, without loss of generality, we can take w = w, + cw, + ¢w,.

Now <w,, uy, {w,, ), {v, w) intersect pairwise in dimension at least
one. Also u ¢ <v, w). Therefore we may suppose v € [w,; u], w € [w,; u].
We set

v = aw, + au, w = bw, + bu.

Then
fi=W + abw, — adbw)ANu + 7w, Aw, 0 =veF .
Let
aF =7,
W, = @ Uy, W, = AU, U = AU .
Then

Ji= W — cw) Ao~ u + U, A Us
Je=(Ys — W) N a Uy + U AU,
fi=axAau, + u, Au, .

We have the result on setting =z, = a'(y, — cw,), x; = a~(y; — c'w,),
y = ax, and noting that y e [x,; s Uy, u,] N [X55 24y Uy, U]

THEOREM 6. Let dim % = 5. Let {f, f. fs} be a basis for an
& — 2 subspace H such that dim (Y-, [fi] = 2. Then Z/ has a basis
{w;, Usy Us, @4y T} such that f, fi, f3 have representations given by either
(i) or (ii) below.

(1) fi= 2 AU + AU, fo = TAU + AU, f5 = UAY + U AY,
Y, Y € [Ty B55 sy Uay s, w € Uy, U,

(ii) fifeasin (1). With we lu,u,p, w € uy,Uyyts, fs = YUAUW +
YNY, Yy Y €[y, @5 Uy Upy Us), 0 = Y EF

Proof. The proof involves a suitable choice of a basis of Z7, as
in the proof of Theorem 5, and the use of the following lemma.

LEMMA 7. Let fe &%, and {u, u,y any two-dimensional subspace
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of [f]. Then either
(1) there exist v, we[f] such that f = yu,Au, + vAw, 0 % v€eF,
or (ii) there exist v, w' e[f] such that f=u, ANV + u, A w'.

Proof. Let {u,, ---, u,} be any basis of [f]. By Lemma 9 of [4],
f has a representation f = u, Au + vAw, where {u, v, W> = {uy, Uy, U
If u,ANu, Af =0, then {u, u,yN<v, w) =0, and it is easy to see
u, € {v, wy since u, & <u, v, wy. If u, Au, A f+# 0, then {u,, u, v, wy =
[7], and % = au, + bu, + cv + dw with b 0. Then f = bu, Au, +
[4, A (cv + dw) + v Aw]. By Corollary 8 of [4] and since &~ (f) = 2,
the term in square brackets has irreducible length one.

We can in fact replace the basis {f,, f;, f;} in Theorem 3 by the

basis {f. + fu fo fo}+  Then [f, + il N [f:] N [f] has dimension two.
We obtain:

THEOREM 7. Let dimZ = 5, H an ¥ — 2 subspace of dimension
three. Then H has a basis which is either of type (i) or type (ii) in
Theorem 6.

Examples of such bases are the following:

EXAMPLE 1. fi, = T, AUy + Uy A\ Us, o = T3 AUy + Uy A Us ,
Js = U ATy + Us A %5 o

EXAMPLE 2. f, f; as in Example 1. f; = u, A (4, + %) + @, A @;.
2. dimZ = 6.

The three-dimensional & — 2 subspaces. If H is an & — 2 sub-
space with a basis {f}, f5 fs} and dim 2 = 6, then dim >}, [f;] =5 or 6.
The first case was discussed in § 1. We show that, in the second case,
H has a basis of pairwise-P, vectors, and there are three possibilities
for such a basis.

Suppose dim 3%, [f;] = 6. Now each pair in {f}, /3, f3} is either a
Ps-or a Pgpair. Thus either {f,, f. fi} is pairwise-P; or at least one
pair is a Py pair. The first case is then reduced to the second.

THEOREM 8. Let H be an & — 2 subspace, and let {f,, f, fsf be
patrwise-Py, independent in H such that dim D1 [fi] =6. Then

Gl [fi]) has a basis {uy, Uy, U, &, &5, X5} such that there are represen-
tations

fi=2, AU + U N\ Uy,
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Jo= @ Aty + U A\ Uy
fi=2sAu+ VAU,
luy v = gy Upp, U & U, U € Uy

Proof. There exists a three-dimensional subspace Z/, of Z con-
tained in each [f;] (see [1], p. 14). The proof is similar to that of
Theorem 5. We choose a basis {u,, u,, vs, ¥, ¥s, Yo} of D3, [fi] in order
to obtain representations f, = y, AU, + Uy A Vs, fo = Ys A\ Uy + U A\ Vsy
fo=Ys ANw, + w, Awy, and <w,, w,, wyy = {uy, Uy, Usy = Z,. Without
loss of generality, we can assume w, € {u,, u,»>. Then w, € {u,, u,», for,
if not, <u,, u,, w.> = %, and (f, + f. + f:) has irreducible length 3 (see
[4], Th. 7). Moreover u ¢<u,> and u ¢ {u,> (see proof of Lemma 3).
Thus <w,, w,y = {u,, u,» and w, = Mv; + %) for some 0 = re F and
?7{/-€<u1, uy. Then f, = yiAu, + u,\(vs + @), fo = Ys AUy + u, A (5 + %),
and f, = ¥, A\ w, + AMw, A\ (v; + %). The appropriate choice of new basis
vectors gives the required representations.

COROLLARY 3. Let H be an ¥ — 2 subspace, and let {fi, fs f3}
be pairwise-P;, independent in H such that dim >i [fi]] = 6. Then

{fu f29 f3} 'L.S a (17 1) baS/IZS fO’I‘ <f1’ fz: f3>-
Proof. Choose a suitable representation of f.

LEMMA 8. Let {f,, fo f3} be a (1, 1) basts of an & — 2 subspace
satisfying (i) dim >, [fi] = 6, (ii) {f., fi} @5 @ Pypair. Then {f,, 1.}
can be extended to a (1,1) basts of pairwise-Ps vectors of {fi, fe fo)-

Proof. We choose a basis {u,, u, @, -+, x} of 3 [f;] so that

Fi= WA+ U AByy [o = U N T + Uy N\ T
(Lemma 4). Also f=u, Ay + u, Ay, and we can take
<Yy YD T Uy sy = o0y T

([4], Lemma 9). Let y=u+ >l ax;, v =u + >i,Bx; where
{u, w'}e<u,y>. We can choose N\, p£€ F' such that

Cl(3—|—)\, a, CK5+# 2%
Bs B, Bs Bs

are both nonzero. Then g, = (\f, + ¢f; + f) extends {f,, f.} to a basis
of <f1y S f3> and [g:] N <903, 904> =0, [93] N <965, :)03> = 0.

In Lemma 8, we can in fact take

and
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fl =ul/\x3+u2/\x4,
f2:u1/\x5+uz/\xey
o= U AY + U NY, Y, YD Ty By oo+, T

and does not intersect each [fi], 7 # 3.

THEOREM 9. Let H be an & — 2 subspace. Let {f,, fr fs} be
patrwise-Py, independent in H such that dim 3% [fi] =6. Then
{fy for [ has a (1,1) basis of pairwise-P; vectors.

Proof. Using the representations of f,, /., f; obtained in Theorem 8
and Corollary 3, we take g, = (f. + fi). Then {g,, 1, f5} is a (1, 1) basis
{9., fz} a Pypair, and [g,] N [f:] N [fs] = <u,, u,p. The result follows by
Lemma 8.

COROLLARY 4. Let {f, /s fo} be a (1, 1) basts for an & — 2 sub-
space such that >V_,[fi] = 6. Then there exist a (1,1) bastis of pair-
wise-Pg vectors for {fi, fa fo)-

THEOREM 10. Let H be an ¥ — 2 subspace, dim H = 3. Let

{fis [ [s} be independent im H such that (i) dim X2, [f;] =6, (ii)
il =00 Then {f,, fi 3} are paitrwise-Ps and for any basis {u,, u.}
Of [fl] N [fz], (Z?=1 [fz]) has a basis {%1, Usgy Tgy ** %y ms} such that {fufzy fs}
have representations f, = U, A\ Xy + U AXyy fo = Uy A\ X5 + Uy A\ Xy S5 =
AW, + AW, = TNV + T\ Vyy <w19 Wy = <.’/U5, x5>, <’U1, 'Uz> = <x3, .’L',,>.

Proof. If {f, f. fi;} were not pairwise-P;, we would have a con-
tradiction of (ii). Since {f,, f.} is a Pspair, the choice of representa-
tions of f,, f, is immediate (Lemma 4). Let

[fs] = <x§9 Tty 2y 22>, @5 € [Ty Uy, U, |, @ € [R5 Uy, U]

It is not difficult to show we can represent f; = x; A w, + i A w,, where
{w,, wyy Ty = L&}, 2, 2,0, and thus {w,, wy} € [2,, 2,; @], and f, = w, A @] +
U, A %, (using Lemma 9 of [4] and proof of Lemma 4).

In a similar fashion, without altering w, or u,, we can choose
CL; € [-’L'5; Wy, uz]y x(’s € [xs; Uy, xz]a <ué, x(’i> = <z17 22> ’

so that f, = u, A @) + Uy A 24, fo = L A v, + @5 A v,, Where v, v,, 25> =
Lah, @, iy, Thus {v, v} e[}, «; ;). From above, f; is also x; A w, +
oy A\ w,, and {w,, w,} € [xf, xf; «;]. With respect to the independent set
{@! A\ )}, the coefficient of «j A« is zero in the second expression
obtained for f,, and the coefficient of x; A x; is zero in the first. It
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follows that neither term appears in f;. We have the result on placing
x; for x},2 =3, -+, 6.

LEMMA 9. Let H be an &~ — 2 subspace. Let {f,, f f3} be in-
dependent in H satisfying

(i) dim 35, [fi] =6,

(ii) {f., fi} is a Pepair,

(iii) dim N, [fi] = 1.
Then there exists gs;€{fy, fi foy such that {f., f: g;} s a basis of
pairwise-Py vectors for {f, f. foy and Ni=, [fi] = [g:] N [A] N [fa]

Proof. There are representations f, = u, A% + U, A@,, f, = U, A %5+

uy A\ Ty and D0, [fi] = uyy Ugy 5 ¢, 25p. Let Mo [fi] = <w)>. Then
u € {u,, u,y. Without loss of generality, we can take v = %,. By Lemma 9

of [4’]7 fs =u AW + w’ AN <w9 w,, '0>C<u2, Ly =0y x6>' If {fi: f29 fS}
are pairwise-P,, we have the result.

Case 1. Suppose {f,, 3} is a Py-pair and {f,, f3} is a P,-pair. Then
we can take f; = u, Aw + 2, A v’ (use Lemma 6 and (iii)), where

<wy Vs ’U'>C <u27 Lgy = vy x6> .
Let [l N[f:] = <, y,¥>. Then {y, y'} € [x;, ; u,]. Therefore
fi=wm AW+ T, AV, we x5, & Uy ], V' € [25, % U] -

Let v = ax; + bx; + cu,. Choose v %0 such that v 4+ ¢# 0. Let
9: = fs + vfi.. Then {g, fi} and {f, g,} are Ps-pairs.

Case 2. Suppose {f., f3}, {f2 f3} are both Pj-pairs. This and (iii)
imply dim ([£.] N [£:]) + ([f:] 0 [f]) = 5, which exceeds the dimension
of [f;]. Hence this case is not possible.

LeMMA 10. If fe &4 and fex, A%y, @, 2] + [® ] A 2s; @] where
[f] =<y <oy @), then fem A@] + [@5 @, €] A [0 @, 2],

Proof. Apply Lemma 7 to {x, ®,> and notice that the coefficient
of 2, A x; is nonzero in f.

THEOREM 11. Let H be an < — 2 subspace, dim H = 3. Let
{f, fo f5} be pairwise-P;, and independent in H satisfying

(1) dim 33, [£] = 6,

(ii) dim N, [fi] = 1.
Then for {u.y = Ni=.[f:] end any vector u, such that {u,u,y = [fi]1N[f]
there exists a basis {U;, Uy, X3 +++, &} such that f, = u, A\ s + Uy A &y
o= U AT+ U A, f[5=UWAY + T, AT, Where ye(uz, Ly o0y x6>’
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Y& luy, Ty ), Y€ [fil, © =1,2. Furthermore, there exists g, such
that {fy, fo 95 = {f0 o fp amd gy = u, Ay + v A w, v €[5 %y, %,
w € [%g; Uy, U] and g5 =V AW + T2 N, 0 £ YEF, V' € [Uy; @ ], W' €
[w:; @4y 2]

Proof. The proof involves choosing a suitable basis of Y., [fi]
and the use of Lemma 6 and 7. To obtain the form of g,, we use
Lemma 10.

LEMMA 11. Let H be an &~ — 2 subspace. Let {f,, f: f3} be in-
dependent wn H such that

(i) dim 3L, [fi] = 6,

(ii) {fy, fi} is a Pgpair,

(i) dim N L] = 2;
then {f,, f»} can be extended to a basis of paitrwise-P; wvectors for

Sy for Fi

Proof. By a suitable choice of basis vectors for 33, [f;], and the
application of Lemma 7, we have two possible cases. One case implies
{fi, fo i} i1s a (1, 1) basis and the result follows by Lemma 8. This
case is when either {f,, fi} or {f. fi} is a Pgpair. Thus, the other
possible case is when both {f,, f;} and {f, fi} are P,-pairs. Then f, =
ATy + Uy ATy [ o = U ATy + Uy AT, With 33 [fi] = <uy, Uy sy + o 0y T
By Lemma 7, f, is either u, Av + u, Aw or u, Au, + v Aw'. The
first case implies {fi, f fs} is a(1, 1) basis and Lemma 8 applies. In
the second case, we can take v e[f], w e[f.]; i.e., V' €[wy, Zi; Uy, U],
w' € [®s, Ts; Uy, Us]. In fact, we can take o' €|, z, u, ], and v =
x, + au, + dbu, + cx,. Now w’' = dx, + a’u, + b'u, + ¢’x,. We then show
¢ — ¢d = 0, by considering the determinant of (a;;), where a;; is defined
as follows. Let z =f, + f; + f;. We can express

2 =W AW, + Wy N\ W, + W5 N\ Wy

For i =1, 2, a;; is the coefficient of w; in w;,. For i =3, ---, 6, a;; is
the coefficient of ; in w;. This determinant is =+ (¢’ — ed). If it is
nonzero, .~(z) = 3. Hence it must equal zero. Then a suitable choice
of basis vectors of 3. [f:] will allow us to assume that ¢ =0 in ¢/
and ¢/ =0 in w’. Then g, = (f, — f. + f») will extend {f, f,} to a pair
wise-P, basis for {f, fu fo>.

We have sufficient reason now to assert the following theorem.

THEOREM 12. Let {f, f, fs} generate a three-dimensional & — 2
subspace H, and dim 3. [fi] = 6. Then H has a basis of pairwise-
P; wvectors {g., 9., 95} which either form a (1,1) basis of H or have in-
tersection (i, [g:] with dimension 0 or 1. Moreover, if {f, fo} is a
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Py-pair, then this pair can be extended to a basis of pairwise-P; vectors
of H.

ExAMPLES. H is generated by {f,, f. fs} Where

(1) fi=w AD + U ATy [y = Uy N\ T + Uy A\ Ty
Jo = N (U + T3 + ) + & N\ X5

(11) f17f2 as in (1)’ fa = Uy A%, + Uy /\ T,

(111) fufz as in (1)! fs = Ly A X5 + X4 /\ Tgo

The maximal & — 2 subspaces, dim ¥ = 6. We shall now obtain
this main theorem:

THEOREM 13. Let H be an < — 2 subspace and dim Z = 6.
Then dim H < 3.

We prove this theorem by a series of lemmas, which show
dim H % 3, in fact, dim H = 4. We take two three-dimensional & —2
subspaces {f, fu foy and {f, fu f. and show their sum is not an & —2
subspace. Theorem 12 allows us to take {f, f, f:} and {f,, f fi} to
be pairwise-P,, and there are 6 cases to consider since dim N, [fi] =
0,1, 2 and a similar intersection property holds for the second set.

The following results are true for any dimension n of % unless
otherwise specified.

LEMMA 12. Let H be an ¥ — 2 subspace. Let {f,, fo, s} be in-
dependent pairwise-P, in H satisfying ‘
(i) dim 3¢, [£i] = 6,
(ii) M= [fi] = 0.
If fie £, independent of {f, [ f3}, satisfying
(@) dim 3%, [fi] =6
(d) {fy fo fi} ts patrwise-P,
(¢) dim Nizyeu [fi] = 1,
then {f\, -+, foy 1s mot an ¥ — 2 subspace.

Proof. By Lemma 10, >3, [f:] has a basis {u,, u,, 2, «+-, %5} such
that fl:ux/\xa"‘uz/\xufz:ul/\xs+u2/\x6,f3:x5/\z+xe/\z’7
&, 2 = <wy, . Let <u) = Ny, [fi]l. Then welu, u,»>. We can take
Uy = U

By Theorem 11, there exists g, € {f, f, f. such that g, = vV Aw’ +
Y, A 0 = ve F and {f), fi 950 = {fi, fo foy. Since {¢/, W', @, @5, 2, 2’}
is independent and {x, + «?/, 2} is independent for some « e F, then
2z = g, — af, has irreducible length 3 for some «. Hence <{f, -+, f
is not an & — 2 subspace.

Since the proofs of the lemmas involving the other cases are similar
to the proof of Lemma 8 in the sense that in each case, we exhibit
a vector of irreducible length 3 or less than 2 except in the 0-0 case,
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which we can reduce to one of the other cases, we shall simply state
the final lemma.

LemMMA 13. Let H be an &~ — 2 subspace. Let {f,, fs, fs} be in-
dependent in H such that dim 33, [f;] = 6. If f.e &, independent
{fis fos fo} such that dimi_, [fi] = 6, then {f,, +++, f> isnot an & — 2
subspace.

We have to check one more case before we obtain Theorem 13.

LEMMA 14. Let H be an & — 2 subspace. Let {fi, fs fs} be in-
dependent in H, dim >3, [fi] =5. If fie & fielfy fo fopy and
dim >t [fi] = 6, then {f,, «++, f> is not an & — 2 subspace.

Proof. We note dim >, ,,[f;] = 6 and apply Lemma 13.

We have now:

LemMMA 15. Let H be an & — 2 subspace. Let {f,, -+, f.} be in-
dependent in H, dim X%, [fi] = 6. Then k < 3. For k = 3,{fis fos 5
has a basts of pairwise-P; vectors.

Theorem 13 follows from Lemma 15
3. dim%Z = 7.
The three dimensitonal ¥ — 2 subspaces.

THEOREM 14. Let H be an ¥ — 2 subspace of dimension = 3.
Let {f, f5 [} be independent in H such that dim D2, [fi] =T7. Then
{fy, for fo} contains a Pgpair, say {fi, f2}, which can be extended to a
pairwise-Py basis {fi, [ 95} of {fiy fo fop. Moreover, either this bastis
is a (1, 1) basis or dim ([f.] N [f2] N [g5]) = 1; and any basts {u,, u} of
{fl] N [fz] can be extended to a basis {un Usy L3y =+ * x7} Of [fl] + [fz] + [93]
such that fi=uU A%+ Uy AZy fo=UNTs+ U ALy, and g, =
Uy ATy + U AV, VE Uy, Ty o0y Ty VE Uy, Ty ey, and  veE[f)] and
ve[fi] in the first case; g, = u, A ®, + &, A\, in the second case.

Proof. A consideration of the various intersections and sums of
[£i, ¢ =1, 2, 3 shows dim N, [f;] is either 1 or 2, and that there are
at least two Pg-pairs in {f, fi, fi}. In the first case this independent
set is in fact pairwise-P,. The second case implies {f., /i f3} isa (1, 1)
basis for {f, fi f5). If this basis is not pairwise-P; but {f,, f.} and
{fs fi} are Pgpairs, and {f, f;} a P;pair, we can choose a basis
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{uu Wy Lay ¢ **, wv} to give f1 = U A\Ts + U Ay, fz = U N\ + uz/\xsyfs =
Uy N\ Ty + Uy AV, VE Uy, &, -+, %,»>. Then we can take g, = f, + fi. To
obtain the desired representations of {fi, f:, fs} in the first case, we
use an argument similar to the ones used earlier to obtain basis repre-
sentations.

The maximal & — 2 subspaces, dim Z = 7. We obtain the follow-
ing theorem.

THEOREM 15. Let H be an & — 2 subspace, dimZ = 7. Then
dimH < 4. When dim H = 4, H has a (1,1) basis, three of whose
members are pairwise-P;.

The proof is contained in Lemmas 16, 17, and 18 which follow.

LEMMA 16. Let {f,, f2, [} be a (1, 1) basis for the & — 2 subspace
Sy Jor fopy such that dim S7E_ [fil = 7. If f.e &5, independent of
{fis for o} such that

(1) dim 3, [f] =1,

(ii) <{fuy ==+, fo s an ¥ — 2 subspace, then {fi, -+, f) has a
(1, 1) basis, three of whose members are pairwise-P.

Proof. By Theorem 14, {f,, f3, fs} can be assumed to be pairwise-
P; with the representations given. Then it is easy to see that some
pair in {f, f,, fi}, say {f, f.}, is such that dim 3,,..[f]] =7, and
{fi fo fi} can be assumed pairwise-P,. The two cases given in Theorem
14, apply to {f, fe» fi}- One case gives the desired result immediately.
We can eliminate the other case by showing the presence of a vector
in &, in {f,, ---, fo»; in fact we can take the vector f, + f, + fs + af,
for some suitable 0 -+ a e F.

LEMMA 17. Let H be an &~ — 2 subspace. Let {f,, f [} be in-
dependent in H,dim 33 [fi] = 7. If fie & fie<fu fo o) such that

(i) dim >, [fil =71,

(i) <y o=, fo is an ¥ — 2 subspace,

them {fy, -+-, fiy has a (1, 1) basis, three of whose members are pair-
wise-P;.

Proof. In view of Theorem 14 and Lemma 16, it is sufficient to
eliminate the case dim MNi,[f:] =1. We use a similar procedure as
in the proof of Lemma 16, and the representations of {f;} in Theorem 14.
We have two cases: (a) Nizee L] = <u1>! () Mi=ses Lfi] = <u2>° In
(@), {fi, +++, fo contains a vector of irreducible length one. In (b),
{fis +++, fo contains a vector or irreducible length at least three.
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In addition to these two lemmas, we note that if H is an & — 2
subspace, {f., fs fs} independent in H and (i) dim >}%., [fi] = 6, then
{f;} can be taken to be pairwise-P, (Lemma 15) and if f, & <f,, fo fors
dim 34, [fil =7, then dim 3, [fi] =7; (i) X5 [fi] =5, and if
foelfu fo fo,dim 34 [fi] =7, then dim >i,[f] =7. Hence both
these cases reduce to the case considered in Lemma 17.

LEMMA 18. Let H be an ¥ — 2 subspace, and {f,, ---, f.} be in-
dependent in H,dim i, [fi] =7. If fie & fi8<fi -, fo, and
dim 32, [fi] = 7, then {fy, ++-,f5 1S not an & — 2 subspace.

Proof. Apply Lemma 17 to {f, ---,f:} and {f, ---,f} taking
{fos for fo} pairwise-P,. Then {f,, ---, f;> has a (1, 1) basis, contradict-
ing Theorem 4.

4. The main results.

LEMMA 19. If H is an & — 2 subspace and {f, fa fs} 1S tnde-
pendent in H,dim 33, [fi] =8, then {fi, f» f3} 18 a (1,1), pairwise-
P; basis of {fy, fo f5p, and we can represent

H=wmAT + U N,

fo= U N5 + Uy Ay
) fo = N, + Uy A\ 255
;[fz] = gy gy Ty * o0y Tg)

If fie L fug fo for fy and fyy <+ -, fip 18 an ¥ — 2 subspace,
then {fu "'yf4} 18 @ (1! 1) basis fO?" <f19 "'yf4>'

Proof. The first part is not difficult to see. Using Lemma 5 we
obtain dim [f,] N {u,, w.») = 1. This intersection will have dimension 2,
and f, forms a Pgpair with one of {f, f,, f} since dim [f,] = 4.

Lemma 19 is extremely important as the second part states that
presence of a 3-subset {f,, /. fi} of any basis of an & — 2 subspace
H such that dim 32, [f;] = 8 will guarantee that the basis will be a
(1, 1) basis. We know that if dim & = 8, then in any basis of H,
we can find a 3-subset {g, ¢., g5} such that dim >?_, [g;] = 6,7 or 8.
It is by now a more or less routine, and somewhat tedious, procedure
to show the existence of a 3-subset {f,, /3, f3} in such a basis of H for
dim ¥ = 8, and then by induction for dim % = 9. We shall simply
state the main result and remark here that Theorem 4 provides the
value of the maximal dimension of a (1, 1) basis.

THEOREM 16. Let dim % =n = 6. If H is an ¥ — 2 subspace,
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then dimH <n — 3. If dimH = 4, then H has a (1,1) basis, and
18 hence a (1, 1)-type subspace.
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