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ON EMBEDDINGS OF 1-DIMENSIONAL COMPACTA
IN A HYPERPLANE IN E*

J. L. BRYANT AND D. W. SUMNERS

In this note a proof of the fcllowing theorem is given,

THEOREM 1, Suppose that X is a 1-dimensional compactum
in a 3-dimensional hyperplane E?® in euclidean 4-space E*, that
¢ >0, and that f: X — E® is an embedding such that d(x, f(x)) < ¢
for each x€ X, Then there exists an e-push 2 of (E*, X) such
that 7| X = f,

The proof of Theorem 1 is based on a technique exploited by the
first author in [3]. This method requires that one be able to push
X off of the 2-skeleton of an arbitrary triangulation of E* using a
small push of E* This could be done very easily if it were possible
to push X off of the l-skeleton of a given triangulation of E°® via a
small push of E®. Unfortunately, this cannot be accomplished unless
X has some additional property (such as local contractibility) as de-
monstrated by the examples of Bothe [2] and McMillan and Row [9].
However, we are able to overcome this difficulty by using a property
of twisted spun knots obtained by Zeeman [10].

In the following theorem let B* denote the unit ball in E*, B® the
intersection of B* with the 3-plane x, = 0, and D? the intersection of
B* with the 2-plane 2z, = 2, = 0.

THEOREM 2. Let X be a 1-dimensional compactum in B® such
that XNBd D* = @. Then there exists an isotopy h,: B*— B* (t € [0, 1])
such that

(1) h, = identity,

(ii) h,|Bd B* = identity for each te]0,1], and

(iii) nX)N D= ©.

Proof. Let I =D*N B°’. Since X does not separate B®, there
exists a polygonal arc J in B® — X joining one endpoint of I to the
other. We may assume, by applying an appropriate isotopy of BY,
that J,, the intersection of J with the half-space x, = 0 is contained
in I. Let F be a 3-cell in B® such that FNJ =J, and FNX = @,
and let J_ be the intersection of J with the half-space x, < 0. Now spin
the arc J_ about the plane x, = x, = 0, twisting once, so that at time
t=mx,J_liesin F. (See Zeeman [10] for the details of this construec-
tion.) Observe that the boundary of the 2-cell C traced out by J_ is

the same as Bd D2
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It follows from [10, Corollary 2] that the pair (B*, C) is equivalent
to the pair (B D* by an isotopy that keeps Bd B* fixed. Such an
isotopy, of course, will push X off of DA

THEOREM 3. Let X be a 1-dimensional compactum in a 3-plane
E? in E*. Then for each 2-complex K in E* and each € > 0, there
exists an e-push h of (E*, X) such that (X)N K = Q.

Proof. Given a 2-complex K and ¢ > 0, we may assume first of
all that none of the vertices of K lies in E® Also, we may move the
1-simplexes of K slightly so that they do not meet X.

Let o be a 2-simplex of K such that o N X # @. By moving X
an arbitrarily small amount, keeping it in E®, we can ensure that each
component of ¢ N X not only lies in Int o, but has diameter less than
e. Hence, we can get ¢ N X into a finite number of mutually exclusive
line segments I, ---, I, in Int o N E?, each of which having diameter
less than e. Let B, ---, B, be a collection of mutually exclusive 4-cells
in E*, each of diameter less than ¢, such that each triple (B;, B; N E?,
B; N 0) is equivalent to the triple (B*, B? D% (as defined above) and
such that B,No N E®* =1, Now apply Theorem 2 to each of the
B,j=1,---,n).

LEMMA. Suppose that X c E*cC E* and f: X — E° are as in the
statement of Theorem 1 with d(x, f(x)) < ¢ for each x€ X. Then for
each 6 > 0 there exists an e-push h of (E*, X) such that d(h(x)), f(x)) < 0
for each xe X.

Proof. Apply the proof of Lemma 2 of [3] with p =2 and ¢ = 1.

The proof of Theorem 1 is now obtained by applying the technique
employed in the proof of Theorem 4.4 of [7]. The only additional
observation that should be made is that if X is a compactum in E*
satisfying the conclusion of Theorem 3 and if g is a homeomorphism
of E*, then g(X) also satisfies the conclusion of Theorem 3 with respect
to 2-complexes in the piecewise linear structure on E* induced by g¢.

COROLLARY. Let X be a l-dimensional compactum in a 3-hyper-
plane in E*. Then for each ¢ > 0 there exists a meighborhood of X
wn E* that e-collapses to a 1-dimensional polyhedron.

This follows from the fact that every 1l-dimensional compactum
can be embedded in E® so as to have this property in E®.

Bothe [2] and McMillan and Row [9] have examples which show
that not every embedding of the Menger universal curve in E® has
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small neighborhoods with 1-spines.

REMARK 1. Notice that Theorem 1 is a consequence of a special
case of a theorem of Bing and Kister [1] if X is either a 1-dimensional
polyhedron or a O-dimensional compactum. If X is a 2-dimensional
polyhedron, then Theorem 1 is false in general as pointed out by
Gillman [6]. It would be interesting to known for what 2-dimensional
compacta Theorem 1 holds. For example, this theorem is true if X
is a compact 2-manifold [5].

REMARK 2. One of the important properties of a compactum X in a
hyperplane in E” is that £ — X is 1-ALG (see [8]). If n —dim X = 3,
this is equivalent to saying that E™ — X is 1-ULC. In [3] and [4] it
is shown that any two such embeddings of X into E" (regardless of
whether they lie in a hyperplane) are equivalent, provided n = 5 and
2dim X + 2 < n. Although there is no hope of improving this theorem
by lowering the codimension of the embedding (at least for arbitrary
compacta), Theorem 1 lends credence to the conjecture that this result
holds when n = 4.
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