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COVERING SEMIGROUPS

HARrRoOLD DAvIiD KAHN

A topological semigroup is a Hausdorff space S together
with a continuous associative multiplication m: S X S— S. The
lifting of the group structure of a topological group to its
simply connected covering space is a technique used in the
theory of Lie groups. In this paper we investigate the lifting
of the multiplication of a topological semigroup S to its
simply connected covering space (S, ¢). A general theory is
developed and applications to examples are discussed.

1. Covering spaces. Let S and S be locally connected topologi-
cal spaces and @:S — S a continuous map. If C is a subset of S,
then C is evenly covered if @ |C: C — C is a homeomorphism for each
component C of »~*(C). If each point in S has an evenly covered
open neighborhood, then ¢ is called a covering map. If ¢ is a
covering map and S is connected, then (S, @) is called a covering
space of S. A covering space is called trivial if the covering map
is a homeomorphism, and if S admits only trivial covering spaces,
then S is called simply connected. If (S, @) and (S,, ;) are simply
connected covering spaces of S and +v:S,— S, is a homeomorphism
such that @,oy = @,, then + is called a covering space isomorphism.
An automorphism of (S, ) is an isomorphism of (S, p) with itself.

LEMMA 1. Let (S, @) be a covering space of S and T a con-
nected space. If a, B: T— S are continuous maps with ot = @op,
then a and B agree everywhere or nowhere.

LEMMA 2. Let P be a topological space. Then P is simply
connected if and only if (a) P is connected and locally connected and
() if :S— S is a covering map, ¥:P— S is continuous, p is in
P, s is in S with ¥(p) = p(s), then there exists unique continuous
¥: P— 8 such that ¥ = @oy and ¥(p) = s.

LEMMA 3. Let (P, ) and (S, @) be covering spaces of S with
p in P and s in S with v(p) = @(s). If P is simply connected and
v:P— S is the unique lifting of + with (p) =s, then ¥ is a
covering map.

LEMMA 4. If (S, @) and (S, p,) are simply connected cover-
ing spaces of S and s; is in S;, T =1,2 with @.(s,) = p,(s,), then
there exists a umique covering space isomorphism +:S,— S, such
that +(s) = s,.
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LEMMA 5. Let (S, p) be a simply connected covering space of S.
We define the set of all automorphisms of (S, @) to be the Poincare
group or fundamental group of S and denote it by P(S). The
orbits of P(S) are the discrete subspaces o~(x), x in S, and P(S)
is simply transitive on these orbits, t.e., a given point can be mapped
wnto a given point in the same orbit by precisely one automorphism
wn P(S).

LEMMA 6. (S, ) be a covering space of S. If A s a connected,
locally conmected subspace of S and A is a component of p~'(A),
then (A, ¢ | A) is a covering space of A.

LEMMA 7. If S and T are topological spaces admitting simply
connected covering spaces (S, @) and (T, @,), then S x T admits the
simply connected covering space (S x T, p, X @) and P(S x T) =
P(S) x P(T). It follows that the product of two topological spaces
18 simply connected if and only if both are.

The proofs of the above lemmas can be found in either Chevalley
[2], Hochschild [4], Hofmann [5], or Pontrjagin [10]. Theorem 8
seems to be of a van Kampen type.

THEOREM 8. Let U, V be simply connected subsets of a space
A. If U\V and V\U are separated and if UNV 1is monvoid and
connected, then U UV is simply connected.

Proof. We may assume A= UUV. Then A is trivially con-
nected and is locally connected by a proof identical to the first para-
graph of Lemma 1.3 on page 45 of Hochschild [4]. Now let ¢: S — S
be a covering map, « a continuous map of A into S, a, a point of
A, s, a point of S with a(a,) = @(s,). We may assume @, is in U.
Define a, = a|U: U— S. Since U is simply connected and
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a(a) = ala,) = @(s,), there is continuous @: U — S with ¢o@, = a,
and @(a)=s, Fix b, in UNV and define y,=a,b,) in S. Then
P(Yo) = podty(by) = a,(b) = a,(b,), where a,=a|V:V—S. Since V
is simply connected, there is continuous @,V —S with @@, = a,
and @,(b,) = ¥,. We now define the maps B, =&, |UNV: UnV—3S,
1 =12 We note that @oB = @o(@, |UNV) = (pe@,) | UNV =
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a, |l UNV=a|UNV=(p) |UNV=¢p(@|UNV)=g¢-B, and that
Bi(by) = &,(by) = Y, = @y(b,) = By(b,). Since U NV is connected, we have
&|\UnV=p=R=a|UNV. We can now define & A— S with
@(a) = &,(a), when a is in U, and = @,(a), when a is in V. The
continuity of @ follows by Exercise 3B of Kelley [7], and it is clear
that po@ = a and that a(a,) =s, Finally, the uniqueness of @
follows again by the connectedness of U N V.

LEMMA 9. If P is a simply connected topological space and A
18 a retract of P, then A is simply connected.

Proof. It is clear that A is connected and locally connected.
Let ¢: S — S be a covering map, ¥: A— S be continuous, a in 4 and
s in S with +(a) = ¢(s). Moreover, let p: P— A be the retraction
map. Then +op:P— S is continuous and +rop(a) = y(a) = p(s).
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Since P is simply connected, there is continuous +:P—S with
Yoo = @oyr and (a) = s. It is now straightforward to show that if
¥ = 4| A, then @oy =+ and +(a) =s. Uniqueness of + follows
from the connectedness of A.

LEMMA 10. Let (S, p) be a simply comnected covering space of
Sand A a retract of S. If A is a component of p~'(A), then A is
a retract of S and (4, p|A) is a simply connected covering space of A.

Proof. Let p: S— S be the retract and @ be in A. Since (@) is
in A, we have pop(@) = @(@) and p lifts to continuous p: S — S with
(@) = @ and @op = pop. Now let j: A< S and p|A: A—S. Then
it is straightforward to show that @o(9| A) = @oj and that (o | 4)@) =
J(@), which implies that p|A =j. Since @(a(S)) = p(@(S)) = p(S) =
A, we have p(S) a connected subset of @~'(4). Observing that @ is
in AN P(S), we have p(S) = A. Therefore, p is a retraction of S
onto A. Moreover, (4, ¢ | A) is a simply connected covering space of
A by Lemmas 6 and 9 of this section.

LEMMA 11. If the topological product of two spaces admits a
simply comnected covering space, then so do both of them.
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Proof. Let (P, ) be a simply connected covering space of S x T
If tisin T and S is a component of @~'(S x t), then (S, f- (cp[S))
is a simply connected covering space of S, where 6:S x t — S is the
natural homeomorphism. Indeed, S x ¢t is obviously a retract of

S x T, and we apply Lemma 10.

LEMMA 12. Let (S, @) be a simply connected covering space of
S, A a connected, locally connected subset of S, and A a component
of p~(A). If A is simply comnected, and we let P(S) and P(A) be
the automorphism groups of (S, p) and (A, p| A), respectively, then
there exists a monomorphism 0: P(A) — P(S) such that if + is in
P(A), then 0(y) = 4 1s the umnique extemsion of + to 4 in P(S).
Moreover, 0 is an isomorphism if and only if @~ '(A) is connected,
i.e., if and only if A = ¢p~'(A).

Proof. Suppose + is in P(4). Fix a, in A. Let v(a) = a, in
A. Now, p(a,) = (p| A)(a,) = (p| A)ev(a) = (¢ | A)(a) = p(a,). Thus,
there exists unique + in P(S) such that +(a) = a,.

We show that + is an extension of +. We first show that
¥(4) = A.  Clearly, ¥(p7(A) = »7(4). We see that (4) is a
connected subset of @~'(A) with a, in A N ¥(A). Therefore, 4(4) < A.
Let 7 be the inverse of + in P(A). As before, we find 7 in P(S)
such that 7(a,) = a, and 7(A) < A. Now, % is in P(S) and fixes
a,. Thus, o7 is the identity of P(S), and A = o7(4) < +(4) < A.
Therefore, :}(Z) = A. Since ¥:S—S is a homeomorphism, so is
¥ | A: A— A. Moreover, (p | A)o(¥ | A)(a) = po¥(a) = p(a) = (| A)(a),
for all @ in A. So, ¥ |A is in P(A). But + is in P(A), and +(a,) =
a, = (¥ | A)(a)). Thus we have v = + | 4, as deseribed.

Now that we have 6 a well-defined function, we observe that it
is trivially injective. A simple computational argument shows that ¢
is a homomorphism.

We next show that A = o '(4) if and only if @ is surjective.
Suppose A = ¢'(4). Let v be in P(S). Then (A) = y(p~'(4)) =
@ Y(A) = A. As above, we see that | A is in P(4). Moreover,
O(y | A) = 4. Therefore, 6 is surjective. Conversely, suppose 6 is
surjective. Let @ be in ¢ '(4). Let o(@) = a in A. There exists
@ in A such that (@) = a = ¢@,). Thus, there is ¥ in P(S) with
¥(@,) = @,. Since ¢ is onto, there is vy in P(A) with 6(y) = +, i.e.,
¥ =+ |A. Then @ = (@) = (@) in A. Since @ was arbitrary in
@ '(A), we have »~'(A) < 4, and they are equal.

2. General theory of covering semigroups. Let S and S be
tgpological semigroups and @: S — S a homomorphism. If, moreover,
(S, p) is a covering space of S, then we say that (S, ) is a covering
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semigroup of S. The proofs of the first two of the following
theorems are omitted, as they are similar to the development of
covering groups. See [2], [4], [5].

THEOREM 1. Let S be a topological semigroup with topological
space structure admitting a simply connected covering space (S, P).
Let ¢ be an idempotent in S and fix some point & in S such that
@(€) =e. There exists a unique topological semigroup multiplication
on S such that & is an idempotent and @ is a homomorphism. If e
is am identity for S, them & is an identity for S. If S is a topologi-

cal group, then so is S.

THEOREM 2. Let (S, @) and (S,, @) be covering semigroups of
S with idempotents &, in S, and &, in S, such that (&) = pye,).
If S, is simply connected, then there exists a unique homomorphism
and covering map ¥: S, — S, with P = @, and (&) = €, More-
over, if S, is also simply comnected, them + is a covering space and
semigroup 1somorphism.

THEOREM 3. Let [X, G, Y], be a topological paragroup (Hofmann
and Mostert [6]) where X(Y) is a left (right) zero semigroup and G
s a group. If X, G, and Y admit stmply connected covering spaces
(X, ), @G, p) and (Y, @), then the left (right) zero multiplication
of X(Y) lifts to a left (right) zero multiplication on X(Y) and the
group multiplication of G lifts to a group multiplication on G.
Moreover, the sandwich function o: Y x X— G lifts to a sandwich
Sfunction &: Y x X — G such that ([X, G, Yl;, ¢, X @, X @) 15 a simply
connected covering paragroup of [X, G, Y],.

Proof. Note that ¢,(p,) is automatically a homomorphism if we
give X(Y) the left (right) zero multiplication. Any lifting of ¢ to &
allows us to form the paragraph [X, G, Y];. A straightforward com-
putation, making use of the equation oo(p; X @,) = @,0G, shows that
o X 9, X 90 [X, G, Y|; —[X, G, Y], is a homomorphism. We omit
further details.

THEOREM 4. I f~ (S, @) s a covering semigroup of S, them @'
{center S) = center S.

Proof. Clearly, center S < o' (center S). Let s be any element
of ' (center S). Define a, 8:S— S with a(x) = sz and B(») = ws.
Straightforward computations show that goa = o8 and that «a(s) =
B(s). Thus, a = B, i.e., s is in center S.

For the rest of this section-we assume that (S, @) is a simply
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gonnected covering semigroup of S. Moreover, S and S have identities
1 and 1, respectively. We define Ker @ to be ¢~'(1). Although this
is not standard semigroup terminology, we feel that Theorem 6 of
this section is ample motivation.

COROLLARY b. Ker ¢ is central.
Proof. Note that 1 is central.

THEOREM 6. If s is in Ker @ and we define : S — S by y(x) =
sx, then + is in P(S). This defines an isomorphism between Ker ¢
and P(S). Therefore, P(S) is commutative.

Proof. Let s be in Kero and define v as above. There exists
7 in P(S) with 7(1) = s. Straightforward computation shows that
oy = @on and (1) = p(1). So, ¥ =7, and 4 is in P(S). Since S
has an identity, we conclude that mapping s into + gives a mono-
morphism of Ker ¢ into P(S). We show that the mapping is onto.
Let + be in P(S). Define s = v(1). Then s is in Ker o, and we
define 7 = 0(s) in P(S). But then  and 7 agree at 1 and, there-
fore, are equal.

COROLLARY 7. If a and b are in S with ¢(a) = pb), then
there exists unique s in Ker ¢ with sa = b.

Material from here through Corollary 18 is independent and
completely algebraic in nature, providing we define (S, ») to be an
algebraic covering of S with group P(S) if:

(@ S and S are purely algebraic semigroups with identities 1
and 1, respectively.

(b) The map ¢:S— S is a surmorphism with Kerp = ¢~(1)
being a central subgroup of S.

(¢) Kerg acts on S with orbits ¢*(x), # in S, and is simply
transitive on these orbits.

(d) P(S) is a faithful functional representation of Ker ¢ on S.

LEMMA 8. If x ts wn S, T s in ¢ '(x), and A, B are subsets of
S, then ¢~'(AxB) = ¢ (A)Tp~(B). Also p~'(Ax) = o7 (A)Z, ¢~ '(xB) =
Tp~'(B), and p(AB) = ¢~ (A)p~(B).

Proof. 1t is trivial that ¢ '(4)Zp~"(B) S ¢~ '(4xB). Conversely,
let ¥ be in @~ '(AxB). There exists @ in 4, b in B with ¢(y) = axb.
If we pick @, b, in S with @@ = a and @(b) = b, then @(a@zb) =
axb = ¢(y). Thus, there exists s in Ker ¢ with s(@Zb) =vy. Observing
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that sa@ is in @~'(4), we have y = (s@)%b in ¢~'(4)Tp~'(B), as desired.

The remaining equations follow easily from the equation p~'(AxB)=
»(A)Zp~(B). Indeed, if Z=1 and x =1, we have ¢ '(4B) =
o (A)p~*(B), and if B or A is {1}, then the remaining equations
result.

THEOREM 9. If H s a subgroup of S, then ¢ '(H) is a sub-
group of S. In particular, if e is an idempotent in S, then p~(e)
is subgroup of S. Moreover, if 0:Ker o — @~'(e) by 0(s) = s&, where
€ is the identity of ¢~'(e), then 0 is an isomorphism. Thus, ¢~'(e) =
P(S). Note that it follows that o *(H) is an extension of P(S) by
H, in the sense of Kurosh [8], p. T6.

Proof. Let T be in ¢ *(H), &) =2 in H. Then Zp*(H) =
o (xH)=¢'(H) and ¢~*(H)Z = ¢~ '(Hx) = ¢ *(H). Therefore, ¢o~(H)
is a group.

We show @ is an isomorphism. Since ¢ is idempotent and Ker ¢
is central, 6(st) = (st)e = (sg)(te) = 0(s)d(t), for all s, t in Kerop.
Moreover, if x is in ¢'(e) then there exists unique s in Ker ¢ with
sé = x, i.e., 0(s) = x. Therefore, 6 is an isomorphism.

THEOREM 10. If E and E are the sets of idempotents of S and
S, respectively, then @ |E:E—E is bijective. In particular, if S
has no tidempotents other than 1, then S has mno idempotents other

than 1.

Proof. If e is in E, then @~'(e¢) is a group and thus contains
exactly one idempotent.

In the next few pages we deal with &- - 5#-, &-, and
_#~classes of a semigroup. Notation and terminology are as in Clifford
and Preston [3].

LEMMA 11. Let a, b be in S and @, b in ¢~(a), p7'(b), respec-
tively. Then aFb if and only if @b, and similarly for 2,
2, and _A.

Proof. The fact that @.<#b implies a.<#b is automatic alge-
braically, and likewise for .2, 22, &, and _Z All that is needed is
that S and S be algebraic semigroups and that ¢ be an epimorphism.
Conversely, let a.<?b. Then Sa = ¢~(S)@ = ¢~(Sa) = p~(Sb) =
9 (S)b = Sb gives @.b. Symmetrically, a.c2b implies @.<2b. As
for S#.classes, we have a5#°b if and only if ¢.<°b and a.<2b if and
only if @%b and a<Zb if and only if @5#b. As for —-classes, we
use the fact that for any semigroup S, & = .2, [3], page 4T.
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Thus, suppose aZb. Then there is ¢ in S with a<°¢ and ¢.<#b. If
¢ is in @ (), then @<¥¢ and ¢<#Zb, i.e., azzb. Finally, for _7-
classes we have a_gb implies SaS = ¢~(SaS) = ¢ (SbS) = SbS, i.e.,
a_go.

THEOREM 12. ¢ induces a bijective correspondence between the
& classes of S and the F-classes of S. More precisely, if @ is in
S and a = p(@), then ¢~(L,) = L;. This holds similarly for R,, H,,
D,, and J,.

Proof. « is in ¢~(L,) if and only if p(x) is in L, if and only if
@) ZFa if and only if x.<~a if and only if x isin L;. Similar proofs
hold for R,, H,, D,, and J,.

COROLLARY 13. ¢ induces a bijective correspondence between the
maximal subgroups of S and the maximal subgroups of S. More
precisely, if H is a maximal subgroup of S, then o(H) is a maximal
subgroup of S; if H is a maximal subgroup of S, then o *(H) is a
mazximal subgroup of S.

Proof. This is immediate if we observe that the maximal sub-
groups of a semigroup are precisely the S#%classes containing
idempotents [3], p. 61.

Let S be a semigroup, H an S#%class of S, and s an element of
S such that sH & H. Then we denote by <, the element of I'(H),
the left Schiitzenberger group [3] of H, such that v,(x) = sz, for all
¢ in H. The following theorem generalizes Theorem 9.

THEOREM 14. If H is an SA-class in S and H = o~(H) is the
corresponding S7~class in S, then the left Schiitzenberger group
['(H) is an extension of P(S) by the left Schiitzenberger group I'(H).

Proof. Let T(H) be the subsemigroup of S of all s in S with
sH < H, and let T(H) be similar in S. Let v: T(H) — I'(H) and
v: T(H) — I'(H) be the natural homomorphisms. It is straightforward
to show that @ (T(H)) = T(H) and that ¢ induces epimorphisms
@u: T(H) — T(H) and ¢": ['(H)— I'(H) with @”oV = vop,. More-
over, Ker ¢ is contained in T(H), and ¥(Ker ) is contained in Ker ¢”.
Thus ¥ induces a homomorphism U, Ker o — Ker ¢”. Since the
image of ¥, is the restriction of all the functions in P(S) to H, it
follows that y, is injective. We next show that Y, is surjective. Let
v be in Ker ¢”. There is s in T(H) with = U(s). Let % be in H.
If @ =o in H, then o(sZ) = p(s)z = Yp)(®) = [Yopu(s)](®) =
[V (9)](®) = [p"(¥)](®) = v.(x) = & = @). Thus, there is ¢ in Ker ¢
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with t% = s¥, and we have v, and v, in I'(H) agreeing at . But
I'(H) is simply transitive on H, and thus D,(¢t) =v, =7, = ¥, as
desired.

We recall that an element a of a semigroup S is called regular
if axa = a for some z in S, and S is called regular if every element
of S is regular. Moreover, a and b are inverses of each other if
aba = a and bab = b, and S is an inverse semigroup if every element
of S has a unique inverse. The following are equivalent for an
element a of a semigroup S: (1) the element o is regular, (2) the
element o has an inverse b, (3) the principal left ideal generated by
a has an idempotent generator, and (4) the principal right ideal
generated by e has an idempotent generator [3], p. 27.

THEOREM 15. If a is a regular element of S and @ is in ¢~'(a),
then @ 1s regular. Therefore, if S is regular then so is S.

Proof. Since a is regular, there is an idempotent ¢ in S with
Se = Sa. Let & be the idempotent in p7'(¢). Then S& = p~'(Se) =
@ (Sa) = Sa, and thus @ is regular.

THEOREM 16. If S is an tnverse semigroup, them so is S.

Proof. We recall that a semigroup is inverse if and only if
every principal right ideal and every principal left ideal has a unique
idempotent generator. Let S be an inverse semigroup. By the above
theorem, every principal right ideal and every principal left ideal has
at least one idempotent generator. Suppose & and f are idempotents
in S with Se¢ = Sf. Then ¢(¢) and o(f) are idempotents generating
the same principal left ideal in S. Since S is an inverse semigroup,
we have ¢(¢) = ¢(f), which implies & = f, by Theorem 10. Principal
right ideals are treated symmetrically.

THEOREM 17. If I is a left ideal (right ideal) (ideal) in S, then
o '(I) is a left ideal (right ideal) (ideal) in S. If I is a left ideal
(right ideal) (ideal) in S, then @~'p(I) = I. Therefore, ¢ induces a
bijective, inclusion preserving correspondence between the left ideals
(right ideals) (ideals) of S and those of S.

Proof. Let I be a left ideal in S. Then Sp~'(I) = (SI) =
(), ie., p*(I) is a left ideal in S. Now, let » be in p~'p(I)
where I is a left ideal in S. There is ¥ in I with p(x) = @(y). So,
there is s in Ker ¢ with # = sy in I. The proof for right ideals or
ideals is similar.
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COROLLARY 18. If I is a minimal left ideal (right idealy
(ideal) in S, then p(I) is a minimal left ideal (right ideal) (idealy
wm S.

THEOREM 19. If S has a minimal ideal K them P(S)=
P(K).

Proof. By Proposition 1.9 of [1] we have that K is a retract of
S, and thus K is connected and locally connected. Let K = ¢~(K).
By Corollary 18, K is the minimal ideal of S and, hence, is connected.
By Lemma 10 of the previous section, K is simply connected. Then
by Lemma 12 of that section P(K) = P(S).

THEOREM 20. Let S have a minimal ideal K. Moreover, let e
be a primitive idempotent in K. Let X = E(Se), Y = E(eS) be the
sets of idempotents in Se and eS, respectively, and let G = eSe, a
maximal subgroup of K. Let 0:Y x X— G such that o(y, x) = yx.
Let 6:[X,G,Y],— K be the canonical map, t.e., 0(,9,y) = xgy.
Now, 0 is an algebraic tsomorphism and continuous [6]. If 6 is
also a homeomorphism, then X and Y are simply connected and thus
P(K) = P@G).

Proof. From Proposition 1.9 of [1], p. 47, we have that K is a
retract of S. Let K = ¢ (K). By Lemma 10 of the previous section,
(K, | K) is a simply connected covering space of K. The topological
space structure of [X, G, Y], is X X G x Y with the product topology.
By Lemma 11 of the previous section and the fact that ¢ is a
homeomorphism, X, G, and Y have simply connected covering spaces
(X, 9), (G, ), and (Y, ®). By Theorem 3, ([X,G, Y], ¢) is a
simply connected covering paragroup of [X, G, Y],, where ¢ =
@ X @, X @5 In lifting o to 7 we

can choose & such that 6(e,, &) = &, where &, is the identity of G and
g, and ¢, are fixed in ¥ and X, respectively, such that ¢.(¢;) =e¢ and
P(e) =e.

Now 6#o¢'(e,, €, &) = 0(¢,e,e) =€ =e = (p| K)(¢), where € is
the idempotent of K such that (&) =e. By Theorem 2, we can
lift & to a semigroup and covering space isomorphism 6 so that
6(e.,, &, &) = € and (p| K)of = fog'.
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We now show that all the elements of X x &, x &, are idempotent.
Now, 9(3(¢; x X)) = 0((ps X @)@ X X)) = (e X X) = eX = e, since
X is a left zero semigroup. This means that d(e; x X) is a con-
nected subset of the discrete set Ker ¢,. Moreover, ¢, = d(e,, &, is
in G(¢; x X). Therefore, (g, x X) = {&,)}). Thus, if x is in X, then
(=, &, &) = (x, 8,0(¢;, 4)&,, &) = (x, &;, &) = (%, &, &), as desired.

We show that @,: X — X is one-to-one. Let x,,, be in X with
P(x) =@, (x;). Then p(d(x;, &, &)= (p | K)oO(x;, &, &)=000'(x;, &, &)=
Y(p,(;), e, €) = p,(x;)ee = p,(x;), © = 1, 2, since ¢,(x;) and ¢ are in X, a
left zero semigroup. Hence, p(4(x,, &€, ;) =@,(2.) =@, (%) = P(O(,, €, &)).
Since (., &, €;) and (x,, ,, &) are idempotents, so are f(x,, &, &) and
4(x,, e,, &;). By Theorem 10, d(x,, &,, &) =0(x,, &,, &,). Hence, (x,, &, €)=
(22, &, €;) and x, = x,.

Therefore, X is simply connected, and symmetrically, Y is simply
connected. Moreover, P(K) = P(X x G x Y)= P(X) x P(G) x P(Y)=
P@G).

Let (G, B) be a simply connected covering group of a compact
Lie group G. It is known [4] that the following are equivalent: (a)
G is semisimple, (b) P(G) is finite, (¢) G is compact. The following
corollary follows easily.

COROLLARY 21. Using the hypotheses and motation of Theorem
20 and assuming that S is compact and that G is a Lie group, we
have that the following are equivalent: (a) G is semisimple, (b) P(S)
is finite, (c) S is compact.

3. Applications and examples.

(A) Semigroups on the cylinder. Mostert and Shields [9] proved
that a topological semigroup on the plane with an identity and no
other idempotents must be a group. The cylinder can be handled as
follows.

THEOREM. Let S be a topological semigroup with identity 1 and
with the cylinder S' X R as topological space structure. Here R 1is
the line and S' = {(x, y): (x,y) in R* and * +y*=1}. If S has no
idempotents other than 1, then S is a group.

Proof. S has a simply connected covering semigroup S, ) with
identity 1 and space the plane. Moreover, S has no other idempotents.
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By Mostert and Shields, Sis a group. Being the homomorphic image
of a group, S is a group.

B) A non-locally connected example. In this section we discuss
one type of cylindrical semigroup [6], p. 67. Following [6], we define
H = [0, ) and H* = [0, ], both under addition.

THEOREM 1. Let (A4, p) be a covering group of the group A,
and let f: H— A be a continuous homomorphism. Define f*: H—
H* x A by f*(p) = (p, f(p)). Since H is simply connected, there
exists a unique homomorphism f: H— A such that @of = f. Now
define f*: H— H* x A by f*(p) = (p, f(p)). Let S= fH(H)U = x A
and S = fH(H) U o X A.

Then S and S are closed subsemigroups of H* x A and H* x A,
respectively, and f+(H) is the compoment of (1 X @)~ (f*(H)) that
contains (0, 1), where 1xp: H*x A — H*x A. Moreover, (S, (1x¢)|S)
s a sort of ‘“not mecessarily connected (at most two components)
covering semigroup” of S in the sense that (f*(H), (1 x @) | f+(H))
is @ trivial covzring semigroup of f*(H) and (o x A, (1 X )| o x A)
18 a covering semigroup of oo X A.

Proof. The fact that S and S are closed subsemigroups of H* x A
and H* x A follows as in [6], as does the fact that f+(H) and f+(H)
are copies of H as subsemigroups of S and S. Observing that
(1 X @)of* = f*, we have that f*(H) is a connected subsemigroup
of (1 X @) *(f*(H)). Let C be the component of (1 X @)"'(f*(H))
containing f*(H). Then (C,(1 X @)|C) is a covering semigroup of
the simply connected f*(H). Thus C is a copy of H, and we must
have f*(H) = C. The rest of the theorem is now obvious.

THEOREM 2. Let A be a connected topological group and f: H—
A a continuous homomorphism. Define f*: H— H* x A and S as
wn Theorem 1. Then S is mot connected if and only if f is an
imbedding onto a closed subset of A.

Proof. S is not connected if and only if f*(H) is closed in S
and, therefore, if and only if f*(H) is eclosed in H* x A. This
means that for each point @ in A, there is a p, in H and a neigh-
borhood N, of a such that (p,, ] x N, is disjoint from f*(H), i.e.,
(p, f(p)) is not in (p,, =] x N, for all p in H. Thus, S is not con-
nected is equivalent to the existence of a neighborhood N, of each
point @ of A such that f(p) is not in N, for sufficiently large p.
This last is equivalent to f(H) being closed in A and the local finite-
ness of the collection of all sets of the form f([k, k¥ + 1]), ¥ a non-
negative integer. The remainder of the proof is straightforward.
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