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A GENERALIZED RADON-NIKODYM DERIVATIVE

H. D. BRUNK AND S. JOHANSEN

Let {vα, ae R] be a family of signed measures on a cr-field
S/ of subsets of an abstract space Ω. Let ^ be a sub ΰ-
lattice of S/\ Under certain conditions we associate with
the family of measures and ^ί a function /, which we call
the Lebesgue-Radon-Nikodym (LRN) function. The function
/ is measurable ^ # and satisfies the relations

va(Bn [f< a]) ̂  0 , aeR,
[ / > & ] ) ^ 0 , b e R ,

This paper contains a construction of / by means of a Jordan-
Hahn decomposition for <7-lattices, and gives various charac-
terizations and representations of /.

Special cases are: the derivative of a signed measure with
respect to a nonnegative measure, conditional expectation given
a <7-field, and conditional expectation given a ^-lattice. The
LRN function also provides a conditional generalized mean
whose relationship to the generalized mean parallels the rela-
tionship of the conditional expectation to the expectation.

The paper also contains a convergence theorem for LRN
functions with respect to an increasing sequence of tf-lattices,
thus generalizing the martingale convergence theorem.

Finally it is proved that / is the solution to a minimiza-
tion problem, generalizing known minimizing properties of
conditional expectation and of conditional expectation given a
(T-lattice. These properties exhibit the latter as solution of
various problems of restricted maximum likelihood estimation.

Section 1 of this paper establishes the existence and uniqueness
of the LRN function of a family {va, aeR} satisfying conditions (1.1),
(1.2), and (1.3) (Theorems 1.5 and 1.7). We thereby generalize the
classical case va = φ — aμ, ^ = ^£% where the LRN function / is
the ordinary Radon-Nikodym function of φ with respect to μ (Example
1.15). We then prove a representation theorem for / (Theorem 1.12)
in terms of mean values of sets. This theorem gives a precise way
of expressing how- in the classical case —φ(A)/μ(A) converges to the
Radon-Nikodym function / at ω as A j {ω}. We show how the LRN
function in the general case can be found if we assume the case va —
φ — aμ known. The function / is essentially the solution of the
equation dvjdμ = 0. Finally we consider some examples.

Section 2 generalizes the result that in the classical case (va =
φ — aμ, ^ = ^ c ) we can characterize a Radon-Nikodym derivative
as an ^ measurable function whose indefinite //-integral is ψ (Theorem
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2.5). In this section we have also included a convergence theorem for
LRN functions on increasing σ-lattices thus generalizing the martingale
convergence theorem.

The last section contains the application to minimization problems.
For a given family {va} of measures we define a minimization problem
to which the LRN function associated with {va} is the solution. We
then discuss how the family {va} is constructed when a family of quasi
convex functions is given.

The LRN function furnishes the maximum likelihood estimate of
ordered parameters in sampling from the generalized exponential fa-
milies introduced in [6]. For maximum likelihood estimation of ordered
parameters in sampling from more general unimodal distributions,
studied by Eeden [12] and by Robertson and Waltman [18], the
solution is shown to be a LRN function; and for each such LRN
function a wide class of such problems is exhibited for which it
furnishes the solution.

1Φ The Lebesgue-Radon-Nikodym function. The fundamental
tool in this section is the Jordan-Hahn decomposition theorem proved
in Johansen [15]- We follow the notation of that paper. Let Ω be
an abstract space, and let >s>/ be a (7-field of subsets of Ω. Let ^
be a σ-lattice of sets from J^% such that 0 e Λ?, Ω e ^ . Define
Jέ* = {A: A = B n C, B e ^έ, C e ^£c). We use the term measure for
a σ-additive extended real valued function on j^~ taking at most one
of the values + °°, — °°.

Let v be a measure on j ^ ~ . A set B e ^€ is called positive, if
for all C e ^€c we have v(B Π C) ^ 0. A set C e Λ€C is called negative
if for all 5 e ^ # we have v(B n C) ^ 0. Let & be the family of
positive sets, and let Λ" be the family of negative sets, then
0 G ^ ΓΊ ̂ , and 0* and Λ" are closed under countable unions. A
set Co 6 Λ^ is called minimal if v(C0) = infc^ v(C) and Bo e £0 is called
maximal if v(B0) = snpBe^v(B). It is seen that both maximal and
minimal sets exist. The following theorem and corollary are given
in Johansen [5].

THEOREM 1.1. If v is a measure on ^~, if v < oo, and if A is
a maximal set for v, then Ac is negative, and in fact minimal.

COROLLARY 1.2. (Jordan-Hahn decomposition). If v is a measure
on J^* i it admits a maximal set A+ e ^£ and a minimal set Ar e ^^%
such that A+ = (A~)c.

Let R denote the set of real numbers, and Rr the set of rationale.
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Let v. (•) be a mapping from R x ^ into the extended real numbers
with the following properties:

(1.1) For each aeR, va( ) is a measure on ^
(1.2) If A e j r and a < b, then

and

va(A) ^ 0 =* vb{A) ^ 0 .

(1.3) There exists an real number a, such that for A

va(A) < oo , a > a ,

and

va(A) > - oo , a < a .

In this paper {yα, aeR) will-unless otherwise stated-denote a family
of measures satisfying (1.2) and (1.3).

Notice that if {va, aeR} satisfy (1.1) and (1.2) then there exists
a nonnegative measure μ which dominates va, aeR. We can choose
μ — Σres' l^rl If Vα is σ-finite for a in a countable set dense in i2,
we can choose μ finite.

LEMMA 1.3. Let {va, aeR} be given. Then there exists for each
r, r rational, a vr positive set MX such that M~ — {Mt)c is vr negative,
and such that Mi is decreasing in r.

Proof. If — oo < a < co, choose At positive for va, such that
A~ = (Aty is negative for va. If a = -co let At = Ω, A~ = 0, if
a — + oo, let AJ = 0, A~ = β. Consider then set functions

vi{A) = va{At n A)

v-(A) = -va{A~ n A)

and the families of sets

- At n ̂ r , ^ + = A+ n ̂ , (^r+y - A+ n
= A- n ̂ r , ^ - = A- n ̂ , ( ^ - ) c = A- n

Then {yα

+, A+, J ^ + , ^ + } and {v~, A-, ^ - f ^~} satisfy (1.1), (1.2),
and (1.3) with a+ = a, a — —a.

In the following r and s are rationals. For r > a+ let J5ί e ^f/+
be maximal positive for v+, and let Cy" G ̂ £~~ be maximal positive for
α>7, r > ~ α . Then J5+ c A+ and C+ c Aj.

Define
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Mi = U Bt , r> a
s>r,seR'

and

M~ = U C~s , r <a ,
s^r,seR'

and let Mi = (Mr)c.

Since Bf- is positive for i J" it follows that it is positive for vβf

since Bt e ^ , and for C e ^jέc, we have

v.(J?.+ n C) = v.+(Bi n (C n A + ) ) ^ o .

Also Z?* is maximal for v8. To see this, note first that for B e
i;s(jg) = vs(B Π AJ) + yβ(B Π A~). Now A" is negative for va and there-
fore by (1.2) for v8, thus

V8{B) ^ vs(B Π At) = vf(B n Aί) ^ vί(Sί) = v.(S+) .

We now want to prove that Mi is positive, and that M~ is negative
for vr. For s > r > a we have that i?ί is positive for 2̂ s and hence
for vr by (1.2). Therefore Mi is positive for vr and since it contains
a maximal set, it is maximal, and by Theorem 1.1 M~ is negative.
Similarly it is seen that M~ is negative and minimal for vr, r < a and
hence Mi is positive. Clearly Mi is decreasing r > a and for r < a.
But since ilί+ c i α

+ c Mj, r > a> s, we get that Λfί is decreasing in r.

DEFINITION 1.4. An extended real valued function / on Ω is a

Lebesgue-JRadon-Nikodym (LRN) function of {va, aeR) and ^t, if

(1.4) / is measurable ^f,

(1.5) vb(B Π [/<&]) ^ 0, beR,Be ^ ,

(1.6) va{C n [/ > a]) ^ 0, α e #, C e ^ c .

We note that it is sufficient that (1.4) holds and that (1.5) and
(1.6) hold for a and 5 in a dense set Q. For suppose c $ Q, and
a>c,aeQ, then by (1.6) va(C Π [/ > α]) ^ 0, and by (1.2) we get
vc(C Π [/ > α]) ̂  0. For α j c, we get vc(C Π [/ > c]) ̂  0. The proof
of (1.5) is similar.

THEOREM 1.5. Let {va,aeR} satisfy (1.1), (1.2), and (1.3). Let
Mi,reR', be chosen as in Lemma 1.3, then the function

f = sup (rIMi - co IM~)
reR'

= inf (rIMϊ + oo IM+)

is a LRN function of {va} and ^£. Here JM" denotes the function
which is 1 on M and 0 cm ikP.
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Proof. To prove (1.4) we remark that

[ / > * ] = U Mi e ̂ έ .
r>t,reR'

Since Mi is vr positive, it follows from (1.2) that Mi is vt positive,
and hence that [/ > t] is vt positive which proves (1.6). Similarly

is vt negative, which proves (1.5).

We now turn to the uniqueness of the LRN function.

DEFINITION 1.6. We call the family {va, aeR} decreasing at zero
with respect to μ if, for all A e ̂ , the relations

a < b , va(A) = »>(A) = 0

imply that μ(A) — 0.

We note that if va is dominated by μ for all α, then {va} satisfies
(1.2) and is decreasing at zero with respect to μ if and only if (yj
satisfies a strict form of (1.2)

(1.2)' If Ae^r, μ(A) > 0, a > 6, then

va(A) ^ 0 => vb(A) > 0 .

THEOREM 1.7. Let {vaJ aeR} be decreasing at zero with respect
to μ. Let μ be defined on J%f. Then any two derivatives coincide μ
almost surely.

Proof. Let / and g be two derivatives. We want to prove that
μ([f Φ Q\) = 0. It is enough to verify that A — [f > a > b > g] is
a //-null set.

By (1.6) we get va{A) ^ 0, but then by (1.2) vb(A) ^ 0. By (1.5)
and (1.2) we get vb(A) <; 0 and va(A) <: 0. Hence

va(A) = »>(A) - 0

which by assumption implies that μ(A) = 0.

It is seen that the definition of a LRN function / requires that
[/ > a] is positive for va. It is not in general true that [f>a] is
maximal or that [/ <̂  a] is negative. But we now formulate two
theorems which illustrate this point. These theorems will be applied
in §3.
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THEOREM 1.8. Assume that va, aeR, is σ-finite. Then va is
dominated by some finite μ, and f is a LRN function associated
with {va, a e R} and ̂  if and only if there exists a countable set
D such that

(1) / measurable

(2) vb(Bn[f£b] j

(3) va(C Π [/ ^ a]) ̂  0, Ce^/% a$D.

Proof. Let / be a LRN function associated with {va, a e R} on

^ T , and let D = {a\μ([f = a]) > 0}, then D is countable, and if b g D,

then [/ = b] is a //-null set, and hence a v6-null set. Hence

vb(B n [/ ^ δ]) = vb(B Π [/<&]) ^ 0 ,

by (1.5). Inequality (3) is proved similarly.
If on the other hand / satisfies (1), (2), and (3) for some countable

set D13 then we extend D1 by D defined above, and we get that (1.5)
and (1.6) are satisfied for a and b in the dense set (D1 (J D)% which
by the remark following the definition is enough to ensure that / is
a LRN function.

THEOREM 1.9. If va is finite and ifv*(A) is continuous, ^

then f is a LRN function if and only if

(1) / measurable ^

(2) vb(BΠ[f^b])^0f Be,

(3) va(C f) [f ^ a]) ^ 0 , Ce

Proof. If / is a LRN function then for b < c < d we get from
(1.5)

vc(B n [/ < c\) ̂  0 , Be

which by (1.2) implies that

vd{BΓ\[f <c\) r g O , Be

If we let c j 6, and then d [ δ, we get (2). Inequality (3) is proved simi-
larly. The fact that (1), (2), and (3) imply (1.4), (1.5), and (1.6) was
established in Theorem 1.8.

Before we proceed to give a different representation of the LRN
function we state a corollary of Theorem 1.5 which is just a re-
formulation of the construction given there.

Let μ be a finite nonnegative measure on (Ω, s^f). Let {fif i e I)
be any family of real functions on Ω. The function / = esssup ί 6//ί
is defined to within //-equivalence by the relations:
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fi ^ g, μ.a.s. i e !<=>/ ̂  g, μ.a.s.

For a reference see Neveu [16]. It can be proved that there exists
a countable set Qd such that / = sup ί 6 ρ/i, μ.&.s.

COROLLARY 1.10. Let {va, aeR} be dominated by μ. For each
α > a choose At c At maximal for va, and for a <a choose A~ c A~
minimal for va. Let At = (A~)% aeR. Then the function

Iess sup (alAi + aIA~)IAi

+ ess inf (aIA~ + aIAi)IA~

is μ almost surely equal to a LRN function of {va1 aeR} and ^ .

Proof. There exists a countable dense set Q, such that f = g,
μ.a.s.,

( sup (rIAϊ + aIA7)IAi

y + inf {rIA- + aIAϊ)IA~ .
\ r<ff,reQ

We now want to prove that g is a LRN function.
For notational convenience r and s will in the following denote

elements of Q and the unions below are taken over those r or s in
Q, for which the conditions indicated in the unions are satisfied. For
t> a we have

[g>t] = [JAϊe.
r>t

and this set is positive for vt. For t < a, we get

[g > t] = AJ U U to < r] c

= AJU U
a>r>t

But now Us^r^ Γ is negative and minimal for vr, and hence, since
r < a implies that vr > -co, we get by Theorem 1.1 that (\J8^rΛ.7)c

is positive for vr, and therefore by (1.2) for vt. Finally the set
U«>r>ί (U^r Aj)0 is positive for vu and hence [g > t] is positive for
vt. Thus (1.6) is proved, and (1.5) is proved similarly.

DEFINITION 1.11. For Ae^ we define

M(A) = sup {α: va(A) ^ 0}
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and

M(A) = sup {a: va(A) > 0}
= inf {a: va{A) ^ 0} .

If M(A) = M(A) for some set A e _̂ ~", we denote the common value
by M(A) and call it the mean of A with respect to the family {va}.
Note that (1.2) ensures that the different expressions for M and M
are consistent. Notice also that the function v (A) is positive in the
interval ] —©o, M(A)[, zero in the interval ]M(A), M(A)[ and negative
in ]M(A), oo[. if further {va} is decreasing at zero with respect to μ
then for any set A, for which μ(A) > 0, we have that

M(A) = M(A) ,

and hence the function v-(A) has at most one point of sign change.
We remark that if {va} is decreasing at zero with respect to μ

then Λf( ) has the Cauchy mean value property: if A = U?=i Ά»> A{A5 =
0 for i ^ i, and if y = Λ?=i Af(̂ <), ^ = V?=i AΓ(^) then y ^ M(A) > y.
For α < ^ implies vβ(A) = Σ.*-î β(-4») > 0, whence Λf(A) > α and Λf(A) ^ ^
the proof of the other inequality is similar. We remark further that
if in addition v(0 is continuous, if μ(Ai) < 0, ί = 1, 2, ., n, and if
^ < y then ^ < ilf(A) < y.

The following results give the representation of a LRN function
in terms of M and M; see also [3], [12], [10], [13] and [18].

THEOREM 1.12. Let μ be finite and dominate the family {va,
aeR}. Then the function f defined by

ίess sup (inf M(BC)IB - oo IBc)IAϊ
I βdA+ C

+ ess inf (sup M{BC)IC + oo ICC)IA~

is μ almost surely equal to a LRN function of {va1 aeR} and ^£\
Here B e <^€ and C e ^£% and At and A~ are chosen as in Lemma
1.3.

Proof. There exists a countable family & of sets in ^/f such
that f — g μ almost surely, where

sup {inf M(BC)IB - oo IBc}IAt

+ inf {sup M(BC)IC + oo ICC}IA~ .
CCZA7Γ Be^f

We can choose & to contain the sets ikfί, r rational, from Lemma
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1.3 and At. Since for - oo < a < oo va{At Π C) ̂  0, we get that
M(At Γ)C)^a and hence Ίnίce^c M(At f)C)^a. Thus the first term
of g is always ^a. Similarly it is seen that the second is ^a. The
same conclusion holds for a = + oo and a = — oo.

For t >̂ a

[flf>ί]= US

where the union is over B e & such that Be At and such that
infCε^fcM(BC) > t. This last condition is equivalent to saying that
B is vr positive for some r > t, hence for vt, which means that [g > t]
is vt positive.

For t < a

[9>t]=au>tωcγ

where the second union is taken over those C for which Cc e &,
C(zA~, and such that b(C) = sn^Bej^M(BC) < r. The last condition
means that C is v& negative for some s < r, hence if u > r, we have

UCc UC c UC
6(C)<r C:vr negative

which imply that

[9>t]= U ( U C ) β ,

where the union U C is taken over those C for which Cc e & and C
is vr negative. This union is now negative for vr, and since it contains
a minimal element M~ and since r < a, its complement is positive for
vr, and hence [g > t] is vt positive. Similarly it is seen that [g < t]
is vt negative which proves that g is a LRN function of {va} and

THEOREM 1.13. Lei {va1 aeR} be given, and let Mi, r rational,
be chosen as in Lemma 1.3 then the function

(sup {inf M(MiC)IM+ + aIM~}IAi
r>a Ce^Tc

+ inf {sup M{M~B)IM- + aIMt}IA~
/ =

is a LRN function of {va, aeR} and

Proof. The same as for Theorem 1.12.

THEOREM 1.14. Let ^έ be generated by sets of the form [g > a]
for some g: Ω —> R. Then the function defined by
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C sup (inf M(BC)IB -™IB°)IAi

j + inf (snpM(BC)IC +

is a LRN function of {va1 a e R) and

Proof For t ^ a we have

where the union is over those B for which B e ^£, BaAX, and
mϊce^jc M(BC) > t. By the special property of ^ which we have
assumed we can select a countable number of sets B satisfying the
restrictions above, but having the same union as before. Now the
argument proceeds as in the proof of Theorem 1.12.

To get the final representation of the LRN function we consider
the following important example.

EXAMPLE 1.15. Let φ be a measure and let μ be a nonnegative
measure on a measurable space (Ω, ^*). Let either φ or μ be finite.
Define va = φ — aμ,aeR. Then {va,aeR} satisfy (1.1), (1.2), and
(1.3) with a = 0 if φ is finite, a — + oo or a = — oo if μ is finite,
but not φ. The associated LRN function / is a generalized LRN
derivative of φ with respect to μ on ^€ as discussed for finite φ by
Johansen [15] and defined in Definition 1.16.

DEFINITION 1.16. If φ is a measure on ά^, and if μ is a non-
negative measure on t ^", then a derivative g of φ with respect to μ is
an extended real valued function on Ω satisfying

(1.7) g is measurable ^ C ,
(1.8) φ(B Π [g < b]) ̂  bμ(B n [g < b]), beR,Be,
(1.9) φ(C Γ)[g> a]) ^ aμ(C 0[g> a]), aeR,Ce,

The following theorem is contained in [15] for the case in which
φ is finite, but also follows from Theorem 1.5 and Theorem 1.7.

THEOREM 1.17. If either φ or μ is finite, then φ has a deriva-
tive g with respect to μ on ^f'. If μ is defined on S$f, then any
two derivatives coincide a.e. [μ]. If φ is finite, g is finite a.e. [μ].

Proof. The existence follows from Theorem 1.5, the uniqueness
from Theorem 1.7, and the finiteness from the relation
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φ([f > a]) ̂  aμ([f > a]) .

For α j c o we get that μ([f > a]) [ 0, and hence μ([f = oo]) = 0.
Similarly it is seen that μ([f = — oo]) = 0.

The following theorem is a direct application of Theorem 1.9, but
is also contained in [15].

THEOREM 1.18. Let φ be a finite measure on J^, μ a nonnegative

finite measure on ^ . Then g is a derivative of φ if and only if

(1.10) g is measurable ^IΓ,

(1.11) φ ( B Π [ g ^ b]) ^ b μ ( B n for ̂  & ] ) , b e R , B ^

(1.12) φ(C Π [σ ̂  a]) ^ aμ{C Π[g^ a]), aeR,Ce

We shall now give a relation between the special case considered
in Example 1.15 and the general case considered in this section. In-
deed, the results of Theorems 1.17 and 1.18 are sufficient to provide a
LRN function / for a family of finite measures {va}. In effect / is
the solution to the equation ga(co) = 0, where ga is the derivative of
va with respect to some finite μ on ^ .

THEOREM 1.19. Let va be finite for all aeR. Let μ be finite

and nonnegative on ^". Let ga be a derivative of va with respect

to μ on ^fί. Then the functions
(1.13) fJ(ω) = sup{r:gr(ω)^0},
(1.14) /2(ω) = inf{r:flrr(ω)<0},
(1.15) f(ω) = inf {r: gr{ω) ̂  0},

(1.16) ft{ω) = sup {r: gr(ω) > 0}, ^

are all LRN functions of {va} on

Proof. Let Ar = {gr ^ 0}. Then

/ x = sup, (rIAr - oo IAc

r) .

If Ar is positive and Ac

r is negative for vr, then Ar is maximal and
Ac

r is minimal, and the proof of Corollary 1.10 carries over without
change, taking a = — oo. But the content of Theorem 1.18 is precisely
that Ar is positive while Ac

r = [gr < 0] is negative by definition of gr.
Thus fL is a LRN function. The others are treated similarly.

We shall now illustrate the results of this section by some ex-
amples.

EXAMPLE 1.20. Let (Ω, j y , μ) be a probability space. Let X be
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c

a random variable such that \\X\dμ < oo. If we define

va{A) = ( (X - a)dμ = \ Xdμ - aμ(A) ,
JA JA

then {va, aeR} satisfies (1.1), (1.2), and (1.3). The LRN function

associated with this family is nothing but the derivative of the set

function φ(A) = \ Xdμ with respect to μ on ^£ (see Definition 1.16).

Hence / = E{X\\^t). Notice that if μ(A) > 0 then M(A) = M(A) =

I Xdμ\μ(A), the mean of the distribution of X given A. In this case

we may take a — oo, At — Ω. Theorem (1.12) gives

dφ\dμ =
= ess sup [{inf M(BC)}IB - oo IB0]

where M(A) = ί Xdμ\μ(A) if /f(A) > 0, M(A) = oo if ^(A) = 0. In

the classical case in which S? is a sub-σ-neld of Jif, we have

dφ\dμ =
= ess sup [{inf M(A)}JB - oo IB"]

ACB
AeS"

Since BLZDB2 implies inΐAcBl M(A) ^ mϊACZB2M(A)f this representation
may be interpreted as giving the derivative dφ\dμ as the "limit" of
averages of X over A as A j {ω).

Instead of ^|Γ we sometimes have a partial order > defined on Ω,
i.e., (1) ω > ω, (2) ωx > ω2 and ω2 > ω3 => ̂  > α>3, (3) ωx > ω2 and
co2 ̂  ft>i => ft>! = ω2. We are interested in functions / which are isotone,
that is

ωx>ω2=^ f{ω,) ^ f(ω2) .

In this case we call B an upper set if ωt e B, ω2 > ωt => α>2 e 5, or if
IB is isotone. If we let ^£ be the class of upper sets, then ^/ί is
a σ-lattice, and / is measurable ^ίέ if and only if / is isotone; see
Brunk [10].

Let us consider two special cases of Example 1.20.
(a) Ω = [0,1], s$? — Borel sets, μ Lebesgue measure. Let ^

be generated by the intervals [α, 1], ae [0, 1], i.e., ^£ consists of the
upper sets generated by the usual order on [0,1]. Then / is measurable
^ if / is nondecreasing.

In this case we can apply Theorem 1.14, and we get that
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f(x) = sup _
6 \ e C — 0

[χ(ω)dω ^
inf J± — - I J 6 , 1 ] - - / J O , 6]

or

f(x) = sup inf
b<x b<c C — 0

is a derivative. Similarly

\x(ω)dω
g(x) = inf sup -^

x<c b<c C — 0

is a representation of the conditional mean value of X given the σ-
lattice ^έ.

(b) Ω — {xly , xk}, s$? — all subsets of Ω, μ is normalized count-
ing measure. ^ is the class of sets {xiy , xk}, i = 1, , k, together
with the empty set. Then the represention in Theorem 1.14 gives

f(xk) =
J —

It is interesting to see that in the last two examples, if we let

X(x) = \ X(t)dt (respectively ^{=1X(Xi)), then / is a derivative of the
Jo _

largest concave minorant of X, a result found independently by Reid
[9] and by Grenander [13] (see also Brunk [7]).

As a more general example we shall consider

EXAMPLE 1.21. Let (Ω, jzf, μ) be a probability space and X
random variable. Let ψ be an extended real valued function on
Ω x R such that ψ(ω, a) is j^-measurable for a e R. Assume that
for some a, — oo <ς a ^ oo, f ( . ,α) + = ^ ( ' , α ) V 0 is integrable, a <a,
and ψ( , ά)~ = - f ( ,α)Λθ is integrable, α ^ α:. Define

yα(A) = i ψ(ω, a)μ(dω) , α e R, A e ^ .
JA

Then {vα, αei?} satisfies (1.1) and (1.3), and we further assume that
it satisfies (1.2). This will in particular be the case if ψ(o), a) is non-
decreasing for ωeΩ. It is seen that the previous example is contained
in this if we put ψ(ω, a) = X{ω) — a.

Br0ns [5], Br0ns, Brunk, Franck and Hanson [6] and Cashwell and
Everett [11] have studied special cases in which ^€ = {0,42}. For
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the case of Cashwell and Everett, we set

(1.17) ψ(ωf a) =

where w is positive. For the case studied by Brons, Brunk, Franck
and Hanson we set

(1.18) φ(ω,a) = -φ[X(ω),a] ,

where φ(x, a) is an extended real valued function on R x R, which
is Borel measurable in X, nondecreasing in a, nonnegative for a > x,
and nonpositive for a < x. For such {va}, we term the LRN function a
conditional generalized mean of X given ^ . The content of Theorem
1.19 in these cases is, loosely speaking, that the conditional generalized
mean of X given ^έ can be obtained by solving, for each ωeΩ, the
equation

E(ψ(-,a)\^f](ω) = 0

for a. If in particular ^/ί — {0,Ω} then the conditional generalized
mean is constant; in the case of (1.17) it is called in [Cashwell and
Everett] a mean of X relative to the weight function w; in the case
of (1.18) it is called in [Brons, Brunk, Franck and Hanson] a φ-mean
of X. (We note that a <£>-mean is determined by the function φ and
the probability distribution of X; whereas for a given weight function
w two random variables on (Ω, Ssf, μ) may have the same probability
distribution but different means relative to w.

We now consider the special φ-function defined by

f 1 x !g a ,
φ(x, a) = sgn (α - x) = \ H

{ — 1 x > a .

Now

va(A) = μ(A) - MAn[x^ά\), Aejr .

If ^£ — {0, Ω) we want the point of sign change for

va{Ω) = 1 - 2μ([X < a]) ,

which means that the <£>-mean of X is any median in the distribution
of X. It is seen that the condition that {va} is decreasing at zero
with respect to μ, in this case just ensures that the median in the
distribution of X is unique. The conditional generalized mean is in
this case called the conditional median of X.

Let Ω = [0,1], μ — Lebesgue measure on S^ the Borel sets, and

let ^ be generated by the sets [α, 1], ae [0,1]. Let X be a random
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variable, and assume μ(A Π [X ^ a[) strictly increasing on the range
of X for all i e / such that μ{A) > 0. Then

va(A) = I - sgn (a - X)dμ

is decreasing at zero with respect to μ, and the equation

»a(A) = 0

gives for μ(A) > 0 that

i.e., M(A) = M(A) = M(A), where M(A) is the median of the distribu-
tion of X given A. By means of this we get from Theorem 1.10 that
the conditional median of X given ^/f is

f(x) = supinf Jlf([δ, c]) ,
b<x b<c

where ^€(b, c\) denotes the median of the distribution of X given the
interval [&, c].

Another way of finding it is by solving the equation

E[sgn(X - α) | |^T] = 0 .

2» A characterization of the LRN function* The martingale
theorem* If we consider the Radon-Nikodym derivative / of a finite
σ-additive set function φ with respect to a cr-finite measure μ on a σ-field
(see Theorem 1.17) then we can characterize it by the fact that its
indefinite integral gives the continuous part of φ, and the singular
part is concentrated on the set where | / | = oo (see Hewitt and
Stromberg [14]).

This was discussed for ^-lattices in Johansen [15], where certain
inequalities between ψ and the indefinite integral of / were proved.
If further μ was finite, / could be characterized by these inequalities.
The purpose of this section is to extend the same ideas to a special
case of the situation considered in § 1, and to prove a martingale
convergence theorem for σ-lattices.

Let us therefore consider a family {va, ae R) defined by

(2.1) va(A) = ί ψ(ω, a)μ(dω)
JA

where ψ maps Ω x R into R such that ψ(co, •) is nonincreasing and
continuous, and φ( , a) is integrable with respect to μ where μ is a
finite measure. This means that va is finite, and if we choose φ(co, a) =
X(co) — α, we get the situation considered in Johansen ]15] for a finite μ.
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The family can be extended in a natural way by defining

ψ(w, ± oo) = lim ψ(a), a)
α—±00

and

v±oo(A) = lim va{A) .
a—>±oo

By the monotone convergence theorem we get that

v±oo(A) = 1 φ(ω, ±oo)μ(dω) .
JA

LEMMA 2.1. The function

ψ: Ω x [— 00 y 00] > [— 00, co]

is jointly measurable with respect to the σ-field generated by J^ x &.

Proof omitted.

DEFINITION 2.2. Let / be an extended real valued ^ measurable
function. We define

vf(A) = I φ(ω, f {ω)) μ{dω) , A e / ,
JA

whenever the righthand side is defined. We call / integrable on A,
if vf(A) exists and is finite, and / is integrable if vf(Ω) exists and is
finite. Notice that vf(Aπ[f < a]) is well defined even if it may be
infinite, while vf(A f][a < f <b] is well defined and finite.

In the case where ψ(cύ, a) = X((o) — a then

vf{A) = \ (X(ω) — f(ω))μ{dώ) ,

and in this case v(A) becomes an affine functional on the class of in-
tegrable functions.

In general, however, this is not the case.

LEMMA 2.3. The class L of integrable functions is a lattice
which contains the constants.

Proof. The lemma follows from the inequality

\φ(ω, (fΛg)(ω))\V\f(ω, (fVg)(ω))\ ^ \φ(ω, f(ω))\ + \φ(ω, g{ω))\ .

LEMMA 2.4. The functional v. (A) has the following properties:
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(1) If f = α, then vf{A) - va{A).
(2) // / <; g on A, and if vf(A) and vg(A) exist, then vf(A) ^ vg(A).
(3) If feL,geL, then vfVg(A) + vfAg(A) = vf{A) + vg(A).
(4) If fn i f, n-» oo, α^d i/ vΛ(A) > - «>, ίAβw v/n(A) ί ^(A),

(5) 1/ Λ ί / , w-* oo, emd i/ vΛ(A) < +oo, then vfn(A) \ vf(A),
n —• oo.

The properties of v. (Ω) describe a σ-continuous isotone valuation
(see Alfsen [1]).

Proof. The proof of (1), (2), and (3) follows directly from the
definition while the proof of (4) and (5) follows from the monotone
convergence theorem together with the continuity of ψ(co, •)•

THEOREM 2,5. Let f denote a LRN function associated with the

family {va, aeR} on ̂ zt, then f is integrable on the set where it is

finite, and

(1) vf(Bn[-°° <f< oo]) ^ 0 , έ
(2) Vf{CVi]~ oo < / < oo]) ̂  o ,

(3) vf([a ^ / < δ]) = 0, aeR,beR.

(4) ι>f(BΓi[f=-°o])£θ,Be^r.

(5) vf(CΓ) [f=+ oo]) ̂  0, C e ^ c .

If, conversely, f is ^ "measurable and integrable on the set where

it is finite and satisfies (1) through (5), then f is a LRN function

associated with {va,aeR} on ̂ έ.

Let us first remark that if further

iΌo ^ 0

and

V-oo ^ 0 ,

then vf vanishes at subsets of [|/| = oo], and / becomes integrable
(vf(Ω) = 0). Before proceeding to the proof, let us again consider the
situation where

va(A) = \ (X(ω) - a)μ(dω) ,

and let us assume that ^ is a cr-field. Now vTO ^ 0 and v_w ^ 0,
and hence / is integrable, and (1) and (2) reduces to

vf{A) - 0 , A e
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or

f Xdμ = \ fdμ
J A J A

which is the usual relation between the set function I Xdμ and its

derivative /.

Proof of Theorem 2.5. We split up the set A = [a <: / < b] as
follows:

A = \JAk,
k=ί

w h e r e A k = [ak <£ / < α 4 + 1 ] , ak+1 — ak = (b — a)n~\ k = 1 , 2 , •• , n 9 a 1 =
a, an+1 = b. We want to prove that

vf{A n 5 ) ^ 0 , B e ^t .

On the set AkΓ\B we know that / ^ ak or (b — a)rrι + / :> ak+1,
hence by (2) of Lemma 2.4

Π 5 ) ^ vβA+1(B n [α4 ^ / < αfc+1]) ^ 0 .

But (6 — α)^- 1 + / <: 26 — α on Af) B, and hence

For ^ ^ o o we get by (4) of Lemma 2.4 that

v f ( A n S ) = vf{[a ^ f < b ] f ) B ) ^ 0 , B e

Similarly it is seen that

vf([a ^ / < ί ) ] n C ) ^ 0 , C e ^ T c .

If we choose B = C = Ω we get (3). We now want to prove in-
tegrability of / on the set [— oo < / < oo], and we therefore want
t o l e t b —• oo, a -^ — ^o.

The function

is nonnegative on [/ ^ α], hence va — vf is well defined and nonnegative
on [/ ^ a].

Therefore

0 =g (yα - ^)(J5n [α ^ / < 6]) ί (^ - V/)(SfΊ [a g / < -])

for 6—> oo. Since yα is finite we have proved that vf(Bf] [a ̂  / <
is well defined and that
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vf{B n [α S f < b]) — vf{B Π [α ^ / < oo]) , b -» oo .

In particular for B — Ω the left hand side is zero and hence

Vf([a ^ / < oo]) = 0 .

Then clearly vf{B Π [a ^ / < oo]) is finite and ^0. This proves the
integrability on the set / ^ a. The integrability on / < a is proved
similarly. Combining these inequalities we obtained (1). The inequality
(2) is proved similarly.

From the inequality

MC Π [/ > α])^ va(C Π [/ > a]) ^ 0, 0 < b < a ,

we obtain by letting α | oo, that

v 6 (Cn[/= +oo]) s o ,

and hence for 6 j oo, we get

Vf(c n [/ = + oo]) = vjp n [/ = Hi ^ o .

Hence (5) is proved and (4) is proved analogously.
To prove the last statement of Theorem 2.5, let us assume that

/ is ^/£ measurable and integrable on the set where it is finite, and
that it satisfies (1) through (5). We have to verify (1.5) and (1.6).
To prove (1.5) we consider

vh{B Π [/ < 6]) ^ vf(B n [/ < b])

= vf{B n [/ = - oo]) + vf(B n [- - < / < b])

= vf(B n [/ - - co]) + vf{[- oo < / < b]) - vf(Bc n [- oo < / < 6]) .

If we now apply (4), (3), and (2) we get that this sum is ^0, which
proves (1.5). (1.6) is proved in the same way.

In proving Theorem 2.5 essential use has been made of the as-
sumptions that the kernel ψ( , •) is continuous and nonincreasing in
the second (real) argument. We remark that Theorem 2.5 can be
applied to situations in which the kernel is neither continuous nor
nonincreasing. As an example of this let us consider a fixed positive
Borel function h, and the family defined by

\a(A) - h(a)va(A)

It is seen that {λα, aeR} satisfies (1.1), (1.2), and (1.3), and that if
/ is LRN for {va, ^T}, then / is LRN for {λα, ^/} . The results
such as

\f[a ^ / < 6] = ( h(f(ω))vf(dω) - 0
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now follow from Theorem 2.5 since the measure vf( ) vanishes on the
(T-field induced by / on the set [—00 < / < 00].

We shall now apply Theorem 2.5 to discuss the uniqueness of the
LRN function.

DEFINITION 2.6. Let / and g be measurable ^£'. We call / and
g equivalent if

, f(ω)) - φ(ω, g{ω)) μ(dω) = 0

or if

= 0 .

Notice that in the case where

φ(ω, a) = X(ω) — a ,

this notion becomes the usual one of equality almost surely [μ].

The following trivial example is also covered by the formulation
in this section. Let μ be a probability measure, and let ^ = {0, Ω}.
Instead of choosing

φ(ω, a) = sgn (X(ω) — α) ,

which is not continuous in α, we define

va(Ω) = ψ{ω, a) = 1- 2μ([X ^ a]) .

Then va has the representation (2.1) for sets in ^ = ^', and (φ(ω, •)
is continuous if we assume that the distribution function of X is
continuous. Two constants a and b are now equivalent if the interval
[a, b] is a null set for the distribution of X. In particular, the
Theorem 2.7 below tells that any two medians are equivalent in this
case.

THEOREM 2.7. // {va, aeR) is defined by (2.1), and if f and g
are two LRN functions associated with the family and ^f, then f
and g are equivalent.

Proof. We want to prove that

or equivalently

(i>/ - »,)[/ < 9] = 0 = (P. - Vf)l9 < f\
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It is enough to prove the former; the latter follows on interchanging
/ and g. It clearly suffices to show that

for real a and b.
As above we prove that

MB Π [/ < a]) ^ 0

and similarly

vg(C n [g > b]) ^ 0 ,

therefore

0 ^ v f [ f < a < b <g]^ v g [ f < a < b < g ] ^ 0

which was to be proved.

We now want to prove a martingale convergence theorem for σ-
lattices. We let <Λt% be an increasing sequence of <7-lattices, generat-
ing the (/-lattice ^ . Let An = σ(Mn), n = 1, 2, and A = σ(M).
Let {va, a e J5} denote a family of finite measures on j ^ which satisfy
the condition (1.2). Then there exists a finite measure μ such that μ
dominates va, a e R. We further assume that {va, a e R) is decreasing
at zero with respect to μ, and that v. (A) is continuous for all

For each n we let va>n denote the contraction of va to JK> and
we let fn denote a LRN function associated with {va>n, aeR} and ^ C
We call the sequence {/n, w ^ 1} a martingale.

THEOREM 2.8. If f = limsup/w and f = liminf/,, then f and
f are LRN functions of {vafae R} and ^d\ and f equals f μ-almost
surely.

Proof The proof is a slight modification of the proof by Andersen
and Jessen [2]. We have

and

[/ ^ b] = Γ) U [fp < a + εn)

where εn decreases to zero. This proves that / and / are measurable
έ Now let Hn = \J"=n HntPf where
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Hn,p = [fn ^ b - εn, , fp_, ^ b - en, fp > b - en] , p ^ n .

For C e ^ί2 and n^mfwe get that Hn is a positive set for vb_,n on
since

vb_εn(C n ffw) = Σ ^ - j c n if.,,)

If we let n —• oo, we get by continuity that

Vj(Cπ[/^ 6]) ^ 0 , CG

By the monotone class argument this can be extended to hold for

Similarly it is seen that

va{B n [/ ^ a] ^ 0 ,

Hence if A = [/ ^ a < b ^ / ] , we get va(A) ^ 0 which by (1.2) implies
that vb{A) ^ 0. On the other hand vb(A) ^ 0 and by (1.2) va(A) ^ 0,
thus va{A) = vέ(A) = 0. Since {va} is decreasing at zero we must have
μ(A) — 0, which proves that [/ Φ f] is a μ null set. Since μ dominates
va it is a null set for vβ, and therefore

va(C Π [/ ^ α]) = va(C n [/^ α]) S 0

which proves that / and therefore / are LRN functions of {va, ae R}
on ^f.

3* A minimizing property* One of the useful elementary proper-
ties of expectation is that it minimizes the mean square deviation:
if X is a random variable, E(X — θf is minimized in the class of real
θ by EX. This is a special instance of a minimizing property of
conditional expectation given a σ-field: for a given random variable X,
E(X — gf is minimized in the class of random variables g measurable
with respect to a cr-field S^ by the conditional expectation E(X\£f).
Indeed E(X\S^) minimizes in the same class also

E[T(X)- T{g) - (X - g)T'(g)\

where T is convex, the above being the special case T(x) = x2. (This
latter property plays a role in such theorems as the Rao-Blackwell
Theorem.) In the statements above, "σ-field" may be replaced by
"σ-lattice". By virtue of the last-mentioned property of conditional
expectation given a σ-lattice, it provides solutions to many problems of
maximum likelihood estimation (cf. [8]); in particular, to the problem
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of maximum likelihood estimation of ordered means in sampling from
distributions belonging to a common exponential family. This latter
requirement is relaxed in a study by van Eeden [12] in which the
distributions need only be strictly unimodal. An intermediate class is
the class of distributions belonging to a generalized exponential family,
as defined in [6].

The minimizing property of the LRN function which is developed
in this section is sufficiently general essentially to cover all of these
special instances, which are detailed in Examples 3.6 through 3.9. It
may be regarded as an elaboration of a maximizing property of a
maximal set, whose proof is immediate, as follows.

If A is a positive set for ι>, and if Ac is negative, then A is

maximal, and in fact, for any B e ^/ί, we have

v(B) ^ v(B) + v{ABc) = v(A U B) = v(A) + v{BAc) ^ v(A) .

Thus v assumes its maximum value on ^έ at A.

The underlying idea of the following theorems is now that if Au is

positive for vu, and Ac

u is negative, and if Bu is any set in ^έ, then

provided that both sides are defined. We shall apply this for sets A%

of the form [/ > u] or [/ ^ u] and for sets Bu of the form [g > u]

or [g ^ u], where / is a LRN function, and g is measurable ^f.
Let {vα, aeR} satisfy (1.1), (1.2), and (1.3). Let further va be

^-finite, then they are all dominated by some finite μ. For the sake
of being definite let us assume that va < oo. We now have the re-
presentation

(3.1) va{A) = ί ψ(ω, a)μ(dω) , aeR,
JA

where we further assume that the function φ( , •) is measurable with

respect to the σ-field generated by ^ x &.
Let 7 be a σ-finite positive measure on £$ the Borel sets of R.

\ ψ+(ω, u)j(du) + I φ~(<0, u)y(du) , a ^ a
/r» r»\ 7 / \ J[α,oo[ J]—oo,α[

(3.2) k(ω, a) =
1 ψ+(ω, u)j(du) + 1 ψ~(a)9 u)y(du) , a < a .
J]α,oo[ J]-oo,α]

For an .^-measurable function g on Ω define

(3.3) I(g) = jfc(ω, g{ω))μ{dω) .
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PROPOSITION 3.1. Let {va, aeR} satisfy (1.1), (1.2), and (1.3), and
let va be σ-finite and va < oo. Let f be a LRN function associated
with {va} on ^£''. If [f ^ u] is negative for vu, u^ a, and [f ^ u]
is positive for vu, u < a, then I(g) ̂  /(/) for all g measurable ^ .
It suffices that these conditions be satisfied 7-almost surely.

Proof. Let us first remark that since [/ > u] is positive for vu,
and [/ ^ u] is negative, then [/ > u] is maximal, and

similarly

vu([f < u]) ^ Vudff < u\) , u<a .

We now insert a — g(ω) in (3.2) and interchange the order of integra-
tion in (3.3). For a fixed u^ a, we shall integrate ψ+ on the set

[u^ g^a][j[a> g] = [u^g] ,

and ψ~ is integrated on the set

[g > u] u φ = [g > u] .

Hence we get a first term of I(g):

l τ(c?u)i\ ψ+(ω, u)μ(dω) + \ ψ~(co, u)μ(dω)\ .
J[α,oo[ U[flτ^«] J[flr>«] J

By considering a fixed ^ < a, we get a second term

\ 7(dw)|\ Ψ+(ω, u)μ(dω) + \ f~{ω, u)μ(dω)\ .
J]_oo,α[ LJ[»<«] Jίg^u] J

Hence

= ί 7(dw){vί([flr ^ w]) + v-([^r > u])}
J[α,eo]

(
J ]-«>,«[

Here and in the following we apply the notation

vt{A) = \AΨ
+(ω, n)μ{dω) , v~(A) -

Now for % ̂  <x, y+ < oo, and

vl([Q ^ w]) + VΪ([9 > u]) = vi(Ω) - vu{[g > u\) .

By assumption and the remark at the beginning of this section we
get that this is
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^Vt(Ω) - Vu(f > u]) .

Treating the second term similarly, and reversing the calculations with
/ replacing g, we get that

1(0) ̂  Hf)

It is clear that the conclusion holds if the conditions are satisfied 7-
almost surely.

We now consider conditions under which the hypothesis of Proposi-
tion 3.1 holds.

THEOREM 3.2. Let {va,aeR} satisfy (1.1), (1.2), and (1.3). Let
va, given by (3.1), be σ-finite, va < oo and define D = {a\μ([f = a]) > 0}.
Then if y(D) = 0 it follows that I(g) ^ /(/) for all ^ measurable
functions g.

Proof. The result follows from Proposition 3.1 and the proof of
Theorem 1.8, since the set D can be chosen as indicated above.

THEOREM 3.3. If va is finite, and if v {A) is continuous, then
I(g) ^ /(/), for all g measurable ^€, where f is the LRN function
associated with {va} and ί

Proof Follows immediately from Theorem 1.9 and Proposition 3.1.

We emphasize that these theorems imply that / provides the solu-
tion to a rather wide class of minimum problems: given ψ and μ, the
same function minimizes I(g) in the class of ^€ measurable functions,
in the first case for all 7 such that y(D) = 0, in particular if 7 has
no atoms, and in the second case for all 7.

There are thus two ways of getting rid of the exceptional set D,
either by letting 7 ignore it or by assuming continuity of v. (A). This
last requirement is relaxed in Proposition 3.5.

DEFINITION 3.4. The family {va} is said to be right continuous
a t a , i f

vs(A) — va{A) , s [ a ,

whenever A is such that vs(A) < 00 for s sufficiently close to a. Left
continuity is defined similarly.

PROPOSITION 3.5. Let {va,aeR} satisfy (1.1), (1.2), and (1.3).
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Let fbe a LRN function of {va} and ^£'. Let {va} be right continuous
at u^t a, and left continuous at u < a. Let g be measurable ^t.
For u^a let u <b < c imply that vb ([g > c]) is finite and for
u <a let c <b <u imply that vb([g < c]) is finite. Then I(g) ^ /(/).

It suffices that the conditions on u hold γ-almost surely.

Proof. In the proof of Proposition 3.1 we used only the relation

vu{[g > u]) ^ vu([f > u]) , u ̂  a

and

K([g < n]) > vu{[f < u]) , u < a .

These relations are easily verified provided

VuilQ >u]nlf^u])^0, u ^ a ,

and

K([ΰ <u]n[f£u])^0, u<a .

Now let a <; u < a < b < c, then

»a([9 > c] Π [/ < a]) ̂  0

which implies by (1.2) that

Ml9 > c] Π [/ < a]) ̂  0 .

Since the left hand side is assumed finite, we let a\u, and get

By right continuity we let b [ u, and get

»u([g >c]Π[f£u])^0.

For c I u, we get

Kilo >u]Γι[f£u])£0.

The proof of the other relation

v*([9 < A Π [/ ̂  u]) ^ 0 u<a,

is similar, and the result now follows as in Proposition 3.1.
The purpose of Proposition 3.5 is to prove

THEOREM 3.6. Let (Ω, J^, μ) be a measure space, and let X and
g be functions in L2(Ω, Jϊf, μ). Assume further that X+ e L^Ω, J^9 μ).
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Let f — Έ(X\\^ί€). Let T be convex and let t(a) be its derivative
from left if a ^ 0, and right for a < 0. Then

\[T(X) - T(g) - (X - g)t(g)]dμ ̂  \[T(X) - T{f) - (X - f)t(f)]dμ .
J J

A theorem of this kind appears in Brunk [8]. (Here the hypothesis
X+ 6 L1 replaces the hypothesis T(X), T(f), and T(g)eL1 and t(f), and
t(g)eL2 from [8]).

Proof. If we define ψ(ω, u) = X((o) — u, then for u > 0,

\ψ+(ω, u)dμ =

since

0 ^ (X - u)I[X > u] ^- i-X 2 ,
Au

and \X2dμ < oo. Similarly it is seen that

\ψ-(ω, u)dμ < oo , u < 0 .

Finally since \X+dμ < oo we can define {va} by

yβ(A) = \ (X- a)dμ ,

and {va} now satisfies (1.1), (1.2), and (1.3) with a = 0. The function
£ determines a measure 7 ^ 0 by the relation

7(]α, 6]) = ί(δ + 0) - ί(α + 0) .

The definition (3.2) now yields

k(ω, u) = T(X(ω)) - T(u) - (X(ω) - u)t(u) .

In order to prove the theorem we only have to verify the conditions
on continuity and finiteness of the family {va}. Clearly, the function
v (A) is continuous if finite, and if g e L2, then for 0<b<c we
have that

c]dμ - bγ[g > c]dμ

which is finite since I[g>c]eLt and L2 and XeL2. Similarly, for
c < b < 0, we have vb([g < c] is finite. Thus the theorem follows
from Proposition 3.5.
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In the previous sections we have taken our starting point in a
family {va, aeR} of measures. Under certain conditions we can con-
struct a LRN function associated with this family and a σ-lattice.
Under other conditions we have, in § 3, constructed a family of func-
tions (3.2) whose mixtures with respect to μ are quasi convex functions,
and a certain functional J, which is minimized by the LRN function /.

When the theory is applied, the starting point is usually a family
of functions, whose mixtures are quasi convex, and a minimization
problem involving these quasi convex functions. Thus, in order to
apply the previous results, we must show how such a family of func-
tions gives rise to a family of measures and how the conditions imposed
on the measures arise in a natural way from conditions on the quasi
convex functions.

We state briefly a few properties of quasi convex functions: (1)
Let k be an extended real valued function in R. The function k is
called quasi convex if [k ^ a] is convex, aeR. (2) A quasi convex
function k determines mx and m2, such that -co ^mL^m2^ oo, and
such that k is decreasing in ]— °o,m2[, and increasing in ]m19 °o[. 3)
k is called strictly quasi convex if it is quasi convex and strictly
decreasing in ] — °o,m2[ and strictly increasing in ]mx, oo[. (3) If
[k^a], aeR, is closed, then k is lower semi-continuous (l.s.c), and
if k is also quasi convex, then k is right continuous in ] — oo, m2[ and
left continuous in ]mί9 oo[. (4) A quasi convex l.s.c. function k de-
termines a signed measure 7 by the relation

7(]α, &]) = k(b + 0) - k(a + 0) .

The measure 7 is nonpositive at subsets of ] — oo, m2[ and non-
negative at subsets of ]mly °o[. (5) A measure with these properties
determines a quasi convex lower semi-continuous function by

(3.4) k{θ) - 7+(] - - , θ[) + 7-(R - [) .

Let now {Ω, Jzf, u) be a measure space, and associate with each ω a
l.s.c. quasi convex function k(ω, •) such that &( , θ) is measurable J ^ ,
and such that inf̂  k(ω, θ) = 0. Let 7ω denote the measure associated
with k(ω, •). Let us assume that there exists a (/-finite measure 7,
such that

(3.5) 7ω < 7 , ω e Ω.

If we denote the Radon-Nikodym derivative of 7ω with respect to 7
by —ψ(ω, •) then combining (3.4) with (3.5) we get

(3.6) k(ω, θ) = ( ψ+(ω, u)j(du) + \ Ψ~(ω, u)y(du) .
J]*,~[ J]-eo,0[
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Notice that (3.6) is the l.s.c. version of (3.2). Under the assumption
(3.5) we have now constructed the function ψ, and we further assume
that

(3.7) va(A) = \ Ψ(ω, ά)μ(dω) ,
J A

is well defined and satisfies the regularity condition (1.3). We want
the function defined by

φ{θ) = f k(ω, θ)μ{dω) = \ ι>i(A)y(du) + \ vz
JA J]0,«>r J]-eo,0[

to be quasi convex, and this is done by imposing the condition (1.2) on
the measures {va}. We further have that mγ(φ) = M(A) and mz{φ) ~
M(A). Furthermore φ is strictly increasing in ]M(A), oo[, in the sense
that if 7([α, 6]) > 0, M(A) < a < 6, then φ(a) < φ(b). Similarly φ is
strictly decreasing in ]— ©o, M(A)[.

The minimization problem, which we can solve, is now that of
minimizing

= I k(ω, h(ω) — ϋ)μ(dω) + \ k(ω, h(ω) + 0)μ(dω) .

in the class of .^-measurable functions (see also (3.3)).
Let us consider some examples.

EXAMPLE 3.7. Let k(ω, •) be continuous, in which case 7 can be
chosen without atoms. Let ^έ — {0,42} and let \va(Ω)\ < 00. Then
an ^^-measurable function is a constant, and any value m[M(Ω), M(Ω)\
is a LRN function associated with {va} and ^ # \ It follows from
Theorem 3.2 that

, θ)μ{dώ)

is minimized by any LRN function. This just reflects the fact that
I( ) is l.s.c, and continuous when finite (see [6], Th. 2.2).

EXAMPLE 3.8. Let Ω = {1, , N} and let ^ f be any sub-σ-lattice
of subsets of Ω. Let μ{ > 0, i = 1, , N. Let k{i, •)> i = 1, , N,
be left continuous quasi convex functions, and let k(i, •) have the
integral representation (3.6) for some 7 and some right continuous
finite functions ψ(i, •). Let {va} be defined by

Then {va} satisfy (1.1) and (1.3) for arbitrary a. Let us define a = —
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If we also assume that {va} satisfy (1.2), then the mixtures

ieA

are quasi convex. This will in particular be the case if k(i, •) is
convex, since then ψ(i, •) and v (A) can be chosen nonincreasing.
Then v-(A) is right continuous, and it follows from proposition 3.5
that

is minimized in the class of .^-measurable functions by a LRN func-
tion of {va} and ^ Γ .

The problem of minimizing a sum of the form Σ*Li k(i> MΌ)/** i n

the class of .^Γ-measurable functions, when the functions k(i, •) are
quasi convex, has been discussed by van Eeden [12] and by Robertson
and Waltman [18]. Van Eeden assumes that the functions and their
mixtures are strictly quasi convex, and Robertson and Waltman relax
this condition but assume continuity. Our contribution here is to
identify the solution with the LRN function associated with {va} and
to point out that the same function / provides the solution to a wide
class of minimization problems obtained by varying Y. (cf. Theorem 3.6).

The representation given in Theorem 1.12 gives an explicit formula
for /. Such formulas are also given by van Eeden and by Robertson
and Waltman. If further {va} is decreasing at zero with respect to μ,
so that μ{A) > 0 implies M(A) = M(A) = M(A), and if v{., is continuous,
then / is given by the following algorithm. Determine BL as the largest
set in ^e maximizing M(B), B e ^ ί . Set f(i) = M{BX), ieBL. Then
choose B2 e ^^, as the largest set in Λ? containing Blf which maximizes
M(B Π B[) in this class. Set f(i) = M(B2 n B[) for i e B2B% Continue
until an integer k is reached such that Bk = Ω. A proof can be based
on Theorem 1.12 and properties of Λf( ) mentioned immediately follow-
ing Definition 1.11. We illustrate the ideas by showing that the LRN
function given by Theorem 1.12 has the value M(B^) on Bx. We note
first that M{Bύ = inΐc MiB.C). For if there is a set C e Mc such that
MiBfi) < M(B,) then M^C) > M{BX), contradicting the choice of B,.
Second, sup^ infc M(BC) is achieved for B = Bλ. To see this, set
Vi = M{BiBc

%_ύ> i = 1, 2, , ft, and suppose BeM. We have B =
BB1UBB2B{U UBBkBl^. For i = 1, 2, , ft, M(BB{BU) ^yi^y1

by the choice of Bi9 hence M(B) ^ y19 whence mic M(BC) ^ yx. Thus

mΐc M(BC) is achieved for B = Bx.

EXAMPLE 3.9. (Maximum likelihood estimation of ordered para-
meters in the generalized exponential distribution.)
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The following theorem can be found in [6].

THEOREM. If

(1) F is a distribution function of a nondegenerate random
variable X with range in the finite interval ]α, b[,

(2) <p(x, θ) is a bounded Borel function on [a, b] x [α, b] which
is nondecr easing in θ for each xe [a, 6], nonnegative for θ ^ x, non-
positive for θ < x,

(3) P{φ(X, •) is discontinuous at θ) = 0, then there exists a non-
decreasing function θ on R with range in [α, b], such that

I exp I — Vφ(x, θ(u)du\dF(x) = 1 , τeR .

We call the family of distributions with densities

expi — I φ(χ, θ(u))du\
I Jo J

with respect to dF, the generalized exponential distributions. If we
choose φ(x, θ) = θ — x, we get the exponential distributions, and we
can then choose

θ(u) = ^
du

where

φ(u) = I exp (ux)dF(x) .

Let now Xij9 j = 1, , %, i = 1, , n, be independent random
variables such that Xi5 has density

ί [H \
\ Jo Jexp-

with respect to dF. The maximum likelihood estimate of r* can be
found by minimizing the convex function

j=ι Jo

If, however, the τ/s are partially ordered we consider that as me-

asurability with respect to ^-lattice ^£', and we have to minimize

n

in the class of ^Immeasurable functions τ( ).
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It is seen that k(i, •) — k(ί, 0) has the representation (3.6) if we
choose

and 7 as Lebesgue measure. We define

then v. (A) is nonincreasing and finite and the family {vτ} satisfies (1.1),
(1.2), and (1.3) with arbitrary a. It follows by Theorem 3.2 that

is minimized by a LRN function of {va} in the class of ^C-measurable
functions. Thus the solution is given explicitly by the representation
theorems in § 1, as well as by the algorithm mentioned in Example 3.8.
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