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A CHARACTERIZATION OF THE NIL
RADICAL OF A RING

WILLIAM J. WICKLESS

Let R be a ring and S a subring of Rβ Let φ be a ring
homomorphism mapping $ onto a division ring* Γ. Choose an
ideal P Q R maximal with respect to the property (P Π S)Φ=
(0). P is a prime idea! of R. If P is any prime ideal of R
which can be obtained in the above manner write P =
P(.Γ,S,φ).

It is shown that all primitive ideals are of the form
p = P(Γ, S, ψ) and that a ring R is nil if and only if it has
no prime ideals of the form P = P(Γ9 S, ψ). It is shown that
the nil radical of any ring is the intersection of ail prime
ideals P = P(Γ, S, φ).

It is shown that if P = P(Γ, S, φ) for all prime ideals
P Q R then the nil and Baer radicals coincide for all homo-
morphic images of R. If the nil and Baer radicals coincide
for all homomorphic images of R, it is shown that any prime
ideal P of R is contained in a prime ideal P' — Pr(Γ, S, φ).

Finally, by consideration of prime ideals P = P(Γ, S, φ),
two theorems are proved giving information about rings
satisfying very special conditions.

2* Certain prime ideals in rings* Let R be any ring and S a
subring of R. Suppose φ is a ring homomorphism mapping S onto
a division ring Γ. We may choose an ideal P £ R maximal with
respect to the property (Pf]S)φ — (0)c It is an easy exercise to
check that P will be a prime ideal of R. If P is any prime ideal
of R which is a maximal ideal such that (PπS)9 = (0) for some
subring S^R and some ring homomorphism φ: S—> Γ, Γ a division
ring, we write P = P(Γ, S,φ). Throughout, for any ring R, we let
J(R), N(R), β(R) denote respectively the Jacobson, nil, and Baer
radicals of R. We start with the following simple fact.

THEOREM 1. Let R be a ring and P a primitive ideal of R.
Then P= P(Γ, S,φ).

Proof. Let P = (0: M) for some simple right R module M. Let
Γ be the centralizer of M. Γ is a division ring. As RIP is primi-
tive it is well known ([3], Th. 3, p. 33) that there exists a subring
S'ξΞ=RIP and a homomorphism φ':S'-+Γ. It is easy to check
P = P(Γ, S, φ) with S = (S')π-1, φ = πφf, π the natural map from
R onto RIP.
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We next consider the structure of rings which have no prime
ideals of the form P = P(Γ, S, φ).

THEOREM 2. A ring R is nil if and only if it has no prime
ideals P of the form P = P(Γ, S, φ).

Proof. If R is nil then every subring S <Ξ R is nil and cannot
be mapped onto a division ring. Thus, R has no prime ideals of the
form P(Γ, S, φ).

Now assume R has no prime ideal of the form P(Γ, S, φ). This
requires that every subring S £ R is a Jacobson radical ring, for if
S is any ring with J(S) Φ S, we can find a subring S' £ S which
can be mapped homomorphically onto a division ring /'-let Γ be the
centralizer of a simple S module for example.

We now show if R is a ring such that J(S) = S for all subrings
S then R is nil. We wish to thank Professor S. A. Amitsur for the
following simple proof of this fact. Let u e R and ζu) denote the
subring of R generated by u. We know J(<(u}) — <V>. Let <X>*
denote the ring <V> with an identity adjoined in the usual way.
Now <(u)* is a homomorphic image of Z[x], the ring of polynomials
in an indeterminate x with integral coefficients. By a result of
Goldman ([2], Th. 3), we know that the Jacobson radical of any
homomorphic image of Z[x] is nil. Thus J(<V>*) is nil, and (u} =
JKu}) — J((uy*) n <X> is nil. Thus u is nilpotent. As u was an
arbitrary element of R we have R is nil. This proves the theorem.

We now obtain a result about the nil radical of an arbitrary
ring.

THEOREM 3. For any ring R, N(R) = Π«er-Pα> where {Pa\ae T}
is the set of all prime ideals of R of the form P — PIT, S, φ).

Proof. Let P = P(Γ, S, φ) be any prime ideal of the above type.
As N(R) is nil, it is easy to check that we have [(N(R) + P)f]S]φ =
(0). As P was a maximal ideal in R such that (Pf) S)φ = (0), we
must have N(R) £ P. Thus N(R) £ Π « e Λ

We now show x g N(R)-+x ί Παer-P«. Let x$N(R). Then (»,
the ideal generated by x in i2, is not nil. By Theorem 2 we have
S £ (a?) and φ: S—>Γ, S a subring of ($), .Γ a division ring, φ a ring
homomorphism onto. Let P = P(Γ, S, φ). Clearly Pe {Pa \ a e T}
and x $ P. This proves the theorem.

We now wish to consider rings in which all prime ideals are of
the form P= P(Γ, S,φ). We obtain the following partial result.



A CHARACTERIZATION OF THE NIL RADICAL OF A RING 257

THEOREM 4 Let R be a ring such that P prime in R—>P =
P(Γ,S,φ). Then for all ideals IQ R we have N[R/I] = β[R/I].
If N[R/I] = β[R/I] for all ideals IQR we have P prime in R-*P<^
P'(Γ, S, φ).

Proof. Let R be such that P prime in R~>P=P(Γ, S, φ). Let
/ be any ideal of R. We first note there is a one-to-one corre-
spondence between all prime ideals P/I = P/I(Γ, S, φ) of the ring
R/I and all prime ideals of the form P(Γ, S, φ)/I in R/I where
P(Γ, S, φ) is a prime ideal in R containing /. Let P/I = P//(Γ, S, φ)
where S is a subring of R/I. Write S as S'/I for S' a subring of
R. Then P/I(Γ, S, φ) = P(Γ, S', πφ)/I where π is the natural homo-
morphism mapping S' onto S. Conversely, if P = P(Γ, S, φ) is a
prime ideal of R containing I then P(Γ, S, φ)/I = P/I(Γ, S + ///, λ<p')
where λ is the natural homomorphism from S onto S + I/I and
φ': S + I/I-+Γ is given by (s + I)φ/ = s*.

Thus we have: N[R/I] = ΓialP/I(Γ, S, φ)]a - Γ\«P{Γ, S, φ)JI =
/Sfiϋ/J]. (Recall, by our assumption on R, {P(Γ, S, <p)α 2 1} is the
set of all prime ideals of R containing /.)

To prove the second statement of our theorem let N[R/I] =
β[R/I] for all I and let P be any prime ideal of R. We have
N[R/P] = £[JR/P] = (0), thus, by Theorem 2, .β/P has a prime ideal
P ' = P'(Γ, S, φ). We have P £ P', which finishes the proof of the
theorem.

We conclude by proving two theorems about rings satisfying
very special conditions. If P — P(Γ, S, φ) £ R, we may extend P to
a maximal right ideal T such that (ΓΠ S)«" = (0). Γ will be a
prime right ideal in the sense that if U is a right ideal of R, U £ T
and xeR with Z7# £ ϊ7, then &e T. (This is weaker than the usual
definition of prime right ideal which requires x = 0.) We have the
following theorem.

THEOREM 5. If R is a ring such that every prime right ideal
is two sided, then every nil right ideal of R is contained in N(R).

Proof. Let A be a nil right ideal of R with A g N(R). Then
A + RA is not nil and thus, by Theorem 2, contains a subring S
which may be mapped homomorphically onto a division ring Γ by a
map φ. As A is nil, we have (A Π S)φ = (0). We may extend A to
a maximal right ideal T such that (Γn S)φ = (0). By the assump-
tion of our theorem we know T is two sided. But then, R + RA £
Γ, a contradiction.

THEOREM 6. Let R be a ring such that if S is a subring of
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R, I an ideal of S, then there exist T an ideal of R such that
Tf)S= I. Then J(R) is nil.

Proof. It is enough to show that the ring J = J(R) contains
no subrings S which can be mapped by a ring homomorphism φ onto
a division ring Γ. Assume that S is such a subring. Consider in
the ring J a prime ideal P = P(Γ, S, φ).

Now J/P contains the subring S + P/P which can be mapped
onto Γ by πφ where π is the natural map from S to S + P/P. It
is easy to check that the ring J inherits the condition of our theorem.
Therefore, as P was maximal in J such that (Pf) S)φ = (Q), we
must have Kernel πφ = (0). Thus S + P/P = Γ, a contradiction
since J/P is a radical ring. Thus J is nil.
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