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SYMPLECTIC BORDISM, STIEFEL-WHITNEY NUMBERS,
AND A NOVIKOV RESOLUTION

DoN PORTER

Using an Adams type spectral sequence due to Novikov,
this paper presents a proof of:

THEOREM A, If M is a manifold representing a class in
the symplectic bordism group 257, m # 8k, then M bounds an
unoriented manifold.

The method of proof yields some further information; a more
precise statement may be found in §4 below.

The complex Thom spectrum MU defines a (generalized) cohomo-
logy theory U*. The ground ring in this theory, 4, = U*(pt) is
isomorphic to the complex bordism ring 2, where 4, has nonpositive
grading and 2% nonnegative. Novikov [8] computed the algebra AY
of operations for the theory U*, A7 = 4*® S. Here & denotes com-
pleted tensor product over Z (cf. [5]), and S is a Hopf algebra over
Z generated by the set of operations s,, one for each partition @ of
an integer |a|. Novikov also constructed a spectral sequence

B, = Ext AY(U*(X), 4*) = m(X)

converging to the stable homotopy ring of a ring spectrum X (cf. [1]).
We apply this theory to derive information about 257, the homotopy
of the symplectic Thom spectrum MSp. In section one the structure
of U*(MSp) is investigated; section two describes a resolution for
U*(MSp); section three computes the necessary part of the E, term
of the spectral sequence; section four completes the proof of Theorem
A.

1. Recall that 4* is a polynomial ring over Z on generators ¢; €
Ay Also H*(BSp) is a polynomial ring over Z on the symplectic
Pontrjagin classes P; e H*(BSp). It follows from the Thom isomorphism
and the Atiyah-Hirzebruch spectral sequence that there is an isomor-
phism of 4,-modules

F: A4, & H*(BSp) — U*(MSp)
given by
FA® P) = (—1)s,,(u) .

Here v denotes the Thom class in U°(MSp) and 4, is the partition of
n consisting entirely of ones. The proof is similar to [3, p. 49].

205



206 DON PORTER

In order to study the action of AY on U*(MSp), let E: AV —
U*(MSp) be the map which evaluates operations on the Thom class.
We will determine the “top dimension” of E(s,). There is a natural
transformation

B: U*(+) — H (MU) Q H*(-)

defined by the commutativity of the diagram

U(X) - H(MU) ® H*(X)

N\ T:
'L\ =
Hom (H*(MU), H*(X))

where ¢ is defined by taking induced maps in integral cohomology.
Note that on U*(pt) = 4, B is just the Hurewicz map. Congider the
Z basis for H*(BU) consisting of an element ¢, for every partition
a, where ¢, is the o symmetric function of the Chern classes ¢; = Cs,
[ef. 2]. Similarly consider the 4,-basis for U*(BU) consisting of the
Conner-Floyd characteristic classes c¢f, [4]. Finally let H,(MU) be
given as the integral polynomial ring on classes ;¢ H,(MU), and for
O = (ly+++y1,) let a* =a; - -+ -a;.

ProrosiTioN 1. If B: U*(BU)—»H*(MU)@)H*(BU) 18 the map
defined above, then

Blef,) = S a* @ ey co

where the sum tis over all partitions w of length at most k.

Proof. Suppose ¢:CP(c)— MU() is a homotopy equivalence
representing a class ye U*CP(~)) which generates U*(CP(«)) as a
polynomial ring over A,. Similarly let ce H*(CP()) be a generator
for H*(CP()). Now if b,e H*(MU) is dual to a, € H,(MU), we have
g*(b) = ¢*'. 8o B: U*(CP(c0)) — H,(MU) ® H*(CP()) is given by

Bl) = 3 a Rt

In the limit CP(ec) = BU(@)— BU, this is the statement of the pro-
position for k =1, since ¢, +¢u = €ury = (¢,)"" modulo the ideal
generated by c, ¢, +--. This ideal restriets to zero in BU(1), so B(cf,)
is as claimed. The proposition now follows by an application of the
splitting principle.

Let f: BSp — BU classify the universal symplectic bundle v over
BSp. Then we have immediately:
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PROPOSITION 2. The map B: U*(BSp) — H,(MU)Q H*(BSp) is
given by

Blef 4, () = 3,a° ® f*(es,+Ca) »

where the sum s over all partitions w of length at most k.

Note that f*(¢,) is given by replacing the odd elementary sym-
metric fuctions in the a symmetric function with zero, and the 2:th
elementary symmetric function with (—1)'P;. In particular,

f*(642k+1) =0
f*(cdz,,) = (=1)'P, .

Next we consider the following commutative diagram:

U*(MU) -2 U*(MSp) < 4* & H*(BSp)

(DI @I
UX(f) B ~
U*(BU) — U*(BSp)— H,(MU) Q H*(BSp)

where @ is the Thom isomorphism. By definition, s, = @(cf,), so we
have E(s,) = (¢f.(7)). Let K be the subring of U*(BU) generated by
{¢f s}, so that U*(f)|x is an isomorphism of K with U*(BSp). Now
since B is a monomorphism, it will determine the Hurewicz image of
coefficients in /4, expressing cf.(v) in terms of c¢f,, (7). But F was
chosen so that @(cf,, (7)) = s,,,(w) = F(1 ® (—1)¢P;), thus we have the
coefficients in F~'(E(s,)) determined recursively. The first step is
given by

PROPOSITION 3. Let p: A, @ H*(BSp) — 4, ® H*(BSp) be projec-
tion on the top dimension in A,. Then

poF™ e E(s,) = 1) f*(c.) -

Proof. Let o't H (MU) ® H*(BSp) — H(MU) @ H*(BSp) be pro-
jection, then by Proposition 2
"o Blef4 (M) =1Q f*(es) -

Thus 0 o Blef (7)) = 1Q f*(c.). Now the Hurewicz map 4, — H,(MU)
is the identity, so p’oc B = po F~'o®, and the proposition follows. This
formula is an explicit expression for the top dimension of Ef(s,).

2. From this information on the AV-module structure of U*(MSp),
we will construct a resolution for U*(MSp). Let £, be the unique
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element of the subring K of U*(BU) such that U*(f)(k,) = U*(f)(cf.)-
Let &, = @(k,), so (s, — &2, is an element of the kernel of E. Let
6, be the set of those partitions @ of 7 which cannot be written
o = (a, @), and let 6 = U,5,0,.

THEOREM 1. The set {(s; — %;): B € O} generates the kernel of E
as a free A.-module.

For the proof of this theorem, we require some data on symmetric
functions. Recall the classes ¢, e H*(BU), and define ¢* = Cag® t0 e " Csy s
if «= (i, --+,1,). Introduce a linear ordering, >, on the set of
partitions of k by taking the longest first and ordering lexicographically
among partitions of the same length. For every partition w of k&, we
define another partition T(w) of k as follows: T(w) = (r, + +-- + 7,
Py + oee + 7y o0e,1,), Where ¢ is the largest integer in w, and 7»; is
the number of j’s in w. Note that 8¢ @ if and only if T(B) = 2a.
Then the following lemmas are elementary.

LEMMA 1. There are integers m(a, B) for every pair of partitions
a, B of k such that ¢ = >, m(a, B)c;.  Moreover, m(B, T(B)) = 1 and
m(a, B) = 0 for B> T(a).

LeMMA 2. There are integers m(B, &) for every pair of partitions
a, B of k such that ¢, = >, m(B, a)c*. Moreover, m(B, T(B)) =1 and
m(B, T(v)) = 0 for v > B.

Now suppose for every partition « of |« | there is given an element
2o € Ayyni—g, S0 that 3 x,s, is an operation of degree d in AY, written
in Novikov’s notation [8]. Suppose that E(Z z.s.) = 0, and that z, =
0 for |a| < k. We write p, for the projection S&® 4, — S, ® 4, onto
elements of degree & in S. Now proceeding by induction on k&, for
the proof of Theorem 1 it will suffice to show

US98 = 0 S vilss — 7))

for some unique coefficients y; € 4.

First consider the case of odd k. For || = k odd, we have ac 6.
From Proposition 2 we have that o’ - B(cf, (7)) is zero for odd k. Thus
Ko = DipseYallr, and () =0, and (X @uS.) = 0p(iai=r TalSe —
#,)). By Proposition 3, k =1, so this also provides the initial case
for the induction, k& = 1.

For k even, since E(S) x.s,) = 0 we have

00 F~oE(,5,) =0,
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S0

l‘é,cale(X)J”*(cu)—:O,

and

l%k (=D (e, 27) = 0

for every v with 2|v| = k. Now by Lemma 2, these equations may
be solved uniquely for ,, @ ¢ @ in terms of x,, «c®. Thus it suffices
to prove that the matrix indexed by a, 8€ @, whose (a,B) entry is
the coefficient of s, in (s, — &) is invertible. Notice that Proposition

3 implies

o) = | 3, (=1)"(6, 205 m@r, 1)sy)

=l
Then by Lemmas 1 and 2, if the coefficient of s, is .2, is nonzero,
we have » < 8. This completes the proof of Theorem 1.

We now construct the first stage of a resolution; the remaining
stages may be obtained by a simple iteration. Let C, = A” and let
C, be the free A*-module generated by {G;: 8€}. Define d;: C,— C,
by d.(G;) = s; — <. Then the following sequence is exact:

0 — U*(MSp) 2,4 ¢, .

There is an isomorphism Hom AY(A4Y, 4,) = 27 defined by evaluation
on the Thom class followed by the Atiyah duality isomorphism. The
gradings are nonnegative here, so we take QY rather than A,. Thus
if gp: C, — 4, is the dual of G,;, we have

Q7 = Hom , (Cyy 4,) —2 Hom , (Cy, 4,)
given by
di(y) = g.@ (ss — ) W)9s -
3. At this point we may compute

Ey* = Ext;(U*(MSp), 4,) = ker d} .

LEMMA 3. Let Xe 2f, be dual toze A_y,. Then df(X) = 0 if and
only if (s, — A.)R) =0 for all weo,.

Proof. Suppose thereisa B¢e 6, |S]| # n, such that (s, — .ZZ,)(2) # 0.
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It will suffice to find ve€ @, with (s, — .ZZ)(2) = 0. Let (s; — .Z2)(2) =
yed g,y # 0,k 0. Then there is an «, |«| = k, such that s, (y) =
0e 4,. By Theorem 1, we may express s,(s; — ;) in terms of {s, —
Frve Bl so there is a ve 6, with (s, — .ZZ)(z) = 0.

THEOREM 2. FE%* 4s a polynomial ring over Z with one generator
X; wn every dimension 41 = 0.

Proof. Since E%* is a subring of QY given as the kernel of a
map of free abelian groups, it suffices to count dimensions. The
theorem now follows from Lemma 3.

It is interesting to note that Lemma 3 together with Proposition
3 gives an explicit criterion for the elements X,;e Qf. These elements
X, are polynomial generators for 237 K Q.

4. The proof of Theorem A requires two further facts.

PROPOSITION 6. For Xe EY*, the image [X], of X wn the un-
oriented bordism ring N, is a fourth power.

Proof. It will suffice to show that the dual Stiefel—Whitney
numbers @w,(X) vanish for « = (v,7,7,7). Recall [10, p. 256] that
the @ symmetric function, w <€ @, is contained in the ideal generated
by 2 and the odd elementary symmetric functions. Thus p,,(Z2,) is
divisible by 2, and s,(z) = 0 (mod 2) for we#@,,, and z the dual of
Xekerd® in dimengion 4n. But for such X and o, s,(z) = ¢,(vX),
the normal Chern numbers. These reduce mod 2 to the dual Stiefel—
Whitney numbers.

c,(vX) = w,,,X)med 2,

so for e 0,,, 0,,,(X)=0. Since XeQ7, [X], is a square [7], so
W (X) =0 for a # (0, w). The only possible a for which @ (X) = 0
is thus a = (v, v, 7, 7).

Novikov shows that Ext’;(U*(Y), 4,) is a torsion group for
s >0, for any Y [8]. Thus integral multiples of the X, are gener-
ators for Q57. Moreover the E, term contains only 2-torsion, as may
be seen from [6, 8], so the multipliers are all powers of two. Recall
the generators ¢, ¢ Qf, and let t* = ¢, - --- - ¢, for @ = (i, -+, 7,).

PROPOSITION 7. Let X; be as in Theorem 2, with X; = >, a(w)t* for
integer coefficients a(w). Suppose [X;l, # 0. Then there is an © =
Ca, 2a) with a(w) =1 (mod 2).
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Proof. By Proposition 6 there are Y, Y'e 2% such that X, =
Y*? 4 2Y’, since [Y?], is a fourth power, by [7]. Thus a(w) = 0 (mod
2) unless w = (8, 8). However if 8 contains an odd number the
symplectic Pontrjagin numbers of ¢° are all zero for dimensional reasons.
Thus if a(2a, 2a) = 0 (mod 2) for all &, the Stiefel —Whitney numbers
of X, vanish, and [X;], = 0.

THEOREM 3. Suppose Xe Q57 and [X], #0. Then X 1is in the
subring of Q3° gemerated by those X, € Ey* C Q% on which all differ-
entials in the spectral sequence vamnish.

Proof. Since |(2a, 2a)| = 4|«], it follows from Proposition 7 that
[X;]: # 0 implies ¢ is even. The rest of the statement follows im-
mediately from the existence of the spectral sequence.

Now Theorem A is just a simplification of Theorem 3. It should
be noted that the map Q2% — N, factors thru 2%, so any torsion ele-
ment of 257 bounds in ,. Moreover 257 ® @ is a polynomial algebra
on X;e 257X Q, so for Xe 025, [X], =0 unless » = 4k. Thus the
content of Theorem A is that [257.]. = 0.

The author has been informed of some recent work of E. E. Floyd
which overlaps congiderably with the above results. Using very
different methods, Floyd gives a more refined upper bound for the
image of 23* in N,.

This work formed part of the author’s doctoral thesis at North-
western University, under the direction of Professor Mark Mahowald.
A summary appeared as [9].

REFERENCES

1. J. F. Adams, Lectures on generalized cohomology, in category theory, homology
theory and their applications III, Springer, Berlin, 1969.

2. , S. P. Novikov's work on complex cobordism, lecture notes, University of
Chicago, 1967.

3. P. E. Conner, and E. E. Floyd, Differentiable periodic maps, Springer, Berlin,
1964.

4. , The relation of cobordism to k-theories, Springer, Berlin, 1966.

5. P. S. Landweber, Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc.
129 (1967), 94-110.

6. J. W. Milnor, On the cobordism ring 2% and a complex analogue, Amer. J. Math.
82 (1960), 505-521.

7. , On the Stiefel—Whitney numbers of complex manifolds and of spin mani-
Jolds, Topology 3 (1965), 223-230.

8. S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism




212 DON PORTER

theory, Izv. Akad. Navk SSSR (Ser. Mat.) 31 (1967), 855-956 (Math. USSR—Izv. 1
(1967), 827-913).

9. D. D. Porter, Novikov resolutions for symplectic cobordism, Notices Amer. Math.
Soe. 17 (1970), 150-151.

10. R. E. Stong, Notes on cobordism theory, Princeton, 1968.
Received February 17, 1970.

STATE UNIVERSITY OF NEW YORK AT ALBANY





